Protocol entities, service access points, and YANG models

Protocol entities, service access points,
and YANG models

Mick Seaman

This note is a result of discussion with Marc Holness. Errors, omissions, and opinions are
mine. At the Budapest 802.1 interim meeting Norm Finn and others asked an important
question. Does the IETF interface YANG model manage a service access point (SAP)
[which the reference model would consider to be an instance of a service interface] or the
protocol entity supporting that SAP? In the simplest cases a protocol entity supports a
single SAP using the service provided by another single (lower) SAP and ‘interface’ may
be considered equivalent to ‘port” in IEEE 802.1 standards (802.1AC-2012 7.4): referring
quite generally to an entry in a bridging table, the SAP provided by the interface stack, the
whole of the stack, protocol entities in the stack, or the media connector. Where
multiplexing and/or demultiplexing are provided within the interface stack, greater
precision is required. IETF experts have been strong advocates of augmenting their
interface model. Augmentation avoids replicating the unicast, multicast, and broadcast
statistics that are part of the interface model. This works well in simple stacks provided that
the stack order of the augmenting components is obvious and no instance of a component
represented by a single model augmentation can appear more than oncel. Avoiding a
YANG development path that cannot manage functionality provided by existing standards
or that over constrains future standardization is a concern?.

This note uses MACsec (802.1AE) and (in the future) Link Aggregation (802.1AX) as real
examples, but attempts a general analysis.

One immediate conclusion is that 802.1X PAE instances should be indexed by
controlledPortNumber rather than by uncontrolledPortNumber (as currently in the MIB).

1. Terminology

This note uses the term “interface’ only when referring
to the IETF interface YANG model and the data and
control aspects associated with a (possibly augmented)
instance of that model. Service access points are
referred to as SAPs, and protocol entities as entities.

When describing graphs | use ‘node’ or ‘nodes’ where
some might use ‘vertex’ or ‘vertices’. | believe all are
agreed on ‘edge’ (‘edges’) as the connection(s)
between the nodes (vertices). A principal goal of this
note is to render apparent individual details that might

be merged and hence confused, so interface stacks are
described as bi-partite directed graphs. That is to say
as graphs in which two sorts of node alternate, in this
case nodes that are SAPs alternating with nodes that
are entities with (to pick a convention) edges shown as
arrows from each SAP’s user (client) to the SAP, and
from the SAP to the supporting entity(ies). Possible
representations of these graphs in terms of YANG
model instances (some but not necessarily all of which
may be ‘interfaces’) are overlayed on these graphs.

1Some of the issues raised may already be addressed by IETF documentation with which 1 am unfamiliar. The discussion in RFC2863 3.1 is still very relevant.

21t is not clear that we need the statistics component of the IETF interface model for every interface in a stack that uses more interfaces (each with a distinct
if-type, if-index, and higher-layer-if and lower-layer-if references) to provide flexibility. See 6 below. We may better off augmenting something simpler

Revision 0.3 July 10, 2016

Mick Seaman 1

Protocol entities, service access points, and YANG models

2. MACsec interface stacks

Figure 1 shows a MACsec protected port in an end
station’. The pertinent multiplexing issues are
illustrated by including two LLDP agents, one (using
the Nearest Bridge group address) supports power
over ethernet (PoE) negotiation and necessarily uses
the Uncontrolled Port, while the other shares and
receives protected information®.

LLDP

(Peer info)

(802.3/802.1AC)
(Common Port)

802.3
(802.1AC)

Figure 1—MACsec protected end station

The larger circles depict protocol entities (shaded) and
the SAPs that connect them (clear). The (arbitrarily
chosen) numbers in the figure represent MIB
information. Within each of the SAPs, the upper small
circle contains its own ifindex, while the lower (if
present) contains the ifIndex of the supporting
sub-layer. So, for example, one of the {higher layer,
lower layer} entries in the ifStackTable will be {35,
74} reflecting the relationship between the SecY’s
Controlled and Common Ports.

The upper circle in (some of) the protocol entities
(shaded) shows how that entity is indexed within its
own MIB. Each LLDP agent is identified by the
combination of the ifindex of the SAP/interface and
the destination MAC address that it uses®. The PAE is

indexed (in the IEEE8021X-PAE-MIB) by the ifiIndex
of the Common Port (if it is controlling a real port) and
by the iflndex of the Uncontrolled Port (if controlling
a virtual port)6. However indexing a real port’s PAE
by the Common Port doesn’t remove the need (in the
MIB) to allocate an iflndex for the UncontrolledPort’,
though the MIB is actually inconsistent on this point.
The Common Port and the Uncontrolled Port have
different ifTypes and different statistics, though the
statistics for the latter can be derived from those for
the Controlled and Common Ports®.

In addition to the indexes shown in Figure 1, the PAE
and SecY MIBs both contain MIB specific pointers. If
(for example) the PAE shown is indexed by the
Common Port’s iflndex (74 in the figure), then its
associated SecY can be found without having go down
the ifStack table and up the inverted Interfaces Stack
Table (ifinvStackTable)®.

It would be nice if we could pick the simplest
representation of Figure 1 in YANG, taking advantage
of augmentation. Unfortunately the entities above the
SecY are attached to two distinct SAPs with different
properties (oper-status in particular)lo. A game we can
play is to try to cover the maximum number of entities
and SAPs with the minimum number of augmented
interfaces. Figure 2 shows one attempt:

LLDP
(Peer neighbor
info)

—_——————

Uncontrolled
Port

ettt name = ‘SecYUctrl
. if-index = 67 ?

if-type =

macSecUncontrolledIF

(Common Port)

802.3
(802.1AC)
\ ~ 7

Figure 2—A possible YANG mapping

*higher-layer-if =
‘SecYCtrl’,
‘LLDP (PoE)', ‘PAE’

*lower-layer-if = ‘802.3’

3 realistic graph for a MACsec protected Bridge Port interface stack necessarily includes detail irrelevant to the present discussion.

4For mapping topology, for example, or that can be relied on to identify mismatched configuration information.

5S0 two LLDP agents that use same MSAP, each using a different group address, can be indexed without requiring additional interfaces/ifindexes.
6See 802.1X-2010 12.9.2. Consult 802.1X (don’t try guessing) for what a virtual port is in this context.

7See 802.1X 13.3.2. However in the MIB the ieee8021XPaeUncontrolledPortNumber OBJECT-TYPE DESCRIPTION claims that this can have the same
index as the Common Port and references 12.9.2 (incorrectly) as its authority. That won’t work in the ifStack. It’s not clear what implementations do for the
usual case of Real Ports (it may be that the macSecUncontrolledIF ifType is not used).

8See 802.1X 6.4.3. The Uncontrolled receive stats are identical to those of the Common Port, the transmit stats are Common’s minus Controlled’s.
9But note that making these direct associations requires knowledge of the specific MIB, which seems an onerous requirement.
10The network manager really needs to know this fact, though the attached entities remain the same whether they are or are not using secured service.

Revision 0.3 July 10, 2016

Mick Seaman 2

Protocol entities, service access points, and YANG models

This not ideal. While it succeeds in representing the
protected service delivered to the IP and LLDP Entity
in the interface stack by including an interface of type
macSecControlledIF, it leaves the Controlled Port as a
separate augmentation of an interface. RFC 7223 says
the interfaces ‘mapping [of if-index] to iflndex used
by ... SNMP .. must be clear’, but the SecY’s
parameters were indexed by the Controlled Port’s
ifindex (35 in the figure) rather than that of the
Uncontrolled Port. Worst of all the parameters most
closely associated with the Controlled Port are in a
different interface.

NOTE—AIlthough RFC 7223 YANG interface model’s
higher-layer-if and lower-layer-if lists are a substitute for MIB
ifStackTable functionality they are list of “name"s (each usually
mapped to ifName, at least for interfaces, and uniquely identifying
each interface instance). They are data node names, so | have
assumed (but 7223 does not say) that the higher-layer-if names at
the top of the stack reference the entities making use of the stack
(these would not have ifNames, of course). The names in quotes in
the figure represent the real names (assigned by the system in some
user friendly way when the interfaces are created, | assume) so
there would not be two interfaces with the name ‘SecYUctrl” but
perhaps (for example) one ‘SecYUctrlPortl” and one
‘SecyUctrlPort2’.

Figure 3 shows another unsatisfactory mapping:

(Peer neighbor
info)

name = ‘SecYCtrl
if-index = 35
if-type =

(Common Port) macSecControlledIF
*higher-layer-if =
‘SecYUctrl,

‘LLDP (Peer ..),

‘PAE’

, *lower-layer-if = ‘802.3'

(802.1AC)

~ 7z

Figure 3—Another possible mapping

This time the Controlled Port has been included in the
SecY interface (associating its management variables
with the correct interface) at the cost of throwing out
the Uncontrolled Port (into an unsatisfactory
augmented interface of its own), since there can be
more Uncontrolled Port attached entities that the

LLDP (PoE) shown. It also has the strange effect of
putting the Uncontrolled Port on top of the Controlled.

The PAE instance could be included within the SecY
interface in Figure 2, though not in Figure 3 as it
would then be using the service provided by an
interface (the Uncontrolled Port) that is one of its own
higher interfaces.

Faced with these two unsatisfactory alternatives, what
should we do?

The “Y’ function that provides promiscuous receive at
the bottom of the SecY and that multiplexes the
protected and the unsecured frames was included
within the SecY specification to:

a) make the (possibly) promiscuous receptiont!
explicit,

(b) avoid any dispute with (possibly numerous)
providers (and standardizers) of Common Port
services as to whether their interfaces would or would
not inherently provide that capability.

If we simply insist on the availability of the Common
|,12

Port functionality in the management mode
redraw Figure 2 (for the MIB) as Figure 4.

we Can

LLDP

(Peer neighbor
info)

Controlled
Port

(802.3/802.1AC)
Common Port]

802.3
(802.1AC)

Figure 4—Relocating the SecY ‘Y’

Now the PAE and the PoE related instance of LLDP
use the Common Port directly. The PAE index has
been changed to match that of the Controlled Port and
no longer depends on a real/virtual port distinction. It
seems that original indexing arose from a series of
mis-steps. First, while the Uncontrolled Port/Common

L given frame that has been received from the Common Port may need to be delivered to both an Uncontrolled Port attached entity and to the user of a
Controlled Port and cannot necessarily be demultiplexed on the basis of EtherType or even {MAC DA, MAC SA, and EtherType}, even though most frames
will, in the most common circumstance, be of interest to only one or the other (or neither). 802.1AE naturally permits implementation of optimization of
common cases but there is no reason to bake their potential complexities into management that has to cover all cases.

12possibly as part of the mapping of the ISS to individual media provided by IEEE Std 802.1AC.

Revision 0.3 July 10, 2016

Mick Seaman 3

Protocol entities, service access points, and YANG models

Port distinction was recognized it was easy for MIB
developers to simply refer to the Common Port. Then
virtual ports were introduced and could not be indexed
by the Common Port, so an option to use the
Controlled Port index was introduced, but the MIB
text description of port numbering added to its
referenced text (in 12.9.2) so that developers using
only the Common Port could ignore the option. While
we could decide to get rid of virtual ports entirely it is
not clear that the need for them (even if not in their
original form using true shared media) will not persist,
and aligning the PAE and SecY parameter indexes
makes for a clean YANG solution. See Figure 5.

€D

LLDP
(Peer neighbor
info)

Controlled
Port

~—~S—— e e e~

802.3
(802.1AC)
\ ~ 7

name =‘MACsec’

if-index = 35

if-type =
macSecControlledIF

*higher-layer-if = ‘IP’,
‘LLDP (Peer ..)’

—— e T~

*lower-layer-if = ‘802.3’

Figure 5—YANG model with relocated ‘Y’

This mapping is probably much closer to what the
interface augmentation enthusiasts (and the naive user)
would expect. It lacks annoying redundant elements.
Note however that the PAE and SecY cannot be used
to augment the 802.3 ‘interface’ unless every other
protocol entity that wants to access the Common Port
can also be represented by an augmentation of the
same interface!®. Note also that the management
relationship of the PAE to the 802.3 interface may
differ from that of the LLDP (PoE) entity, as the
frames that the 802.3 interface delivers to and receives
from the MACsec as a whole can have any
EtherTypel* while the latter may be distinguished by
EtherType (as well as by destination MAC address).

We may or may not wish to re-index the PAE MIB so
that it matches the YANG, thus circumventing any
objection to having the PAE parameters indexed
differently in the MIB and in the YANG.

When virtual ports are supported a ‘real port’” PAE
protocol entity (instance) may be required even if it is
not directly associated with a usable SecY or
Controlled Port, though it is unlikely to be worth
optimizing for that case as the real port’s SecY
parameters serve as the prototype for each of the
virtual port’s SecYs*®. A case that is worth optimizing
is when the PAE supports a simple PAC!6 (i.e. when
MACsec is not being used). Since the parameters
associated with a PAC, beyond those already provided
by the basic IETF interface for the Controlled Port, are
just those associated with any 1SS SAPY the
suggested augmentation hierarchy (if that is the
appropriate term) is that:

a) a PAE model includes PAC parameters, and can
augment just the basic interface.

NOTE—802.1X-2010 13.3.2 specifies that the interface’s (the
Controlled Port’s) ifType) and thus the YANG model’s if-type
is macSecControlledIF even if no MACsec is involved8.

b) a SecY model can augment an interface that has
been augmented by the PAE model (and has not
already been incremented by a SecY).

Finally Figure 6 shows how the proposed YANG
interface data model would represent a real and two
virtual ports, both making use of the same 802.3
interface and both supporting an instance of IP and
LLDP (each communicating through paths separated
—at least as far as the next bridge—by MACsec.

—_—

~
Figure 6—MACsec with virtual ports (example)

131 the limit all the possible interface stacks would be accommodated within a single interface (with internal higher and lower sub-layer references?).
141t would be an unnecessary complication to reconfigure MACsec’s use of the 802.3 interface if validateFrames (Null, Disabled, Check, or Strict) or

protectFrames (True, False) change.

15At present, at least, virtual ports (each with a PAE and SecY or PAC) are automatically created (if their creation is enabled) on receipt of an EAPOL frame
from a new potential peer. The Controlled Port interface for the real port may be unused.

165ee 802.1X.
17 AdminPt2PtMAC and OperPt2PtMAC.

18802.1X-2004 makes no mention of ifType, though it does reference RFC 2863.

Revision 0.3 July 10, 2016

Mick Seaman 4

Protocol entities, service access points, and YANG models

While discussing how 802.1X and MACsec can be
managed we should not forget that some management

3. Link Aggregation
Figure 7 shows the entities and SAPs called out by

parameters are not specific to individual SAPs or
protocol entities that might represented by YANG
interfaces.

In the case of MACsec/.1AE the only interface
independent parameters provide information about
Cipher Suites that might be implemented within the o~
managed system. This doesn’t present a scoping
problem?® each port has its own parameters
indicating which of these Cipher Suites it supports,
and those parameters can be included within each
interface.

In the case of 802.1X-2010, the only PAE
management information shown?® as applying to

multiple PAEs, are those for NIDs (Network

Identities). Their use is controlled per port, so is
sufficiently finely grained even if some NIDs should

only be used on a subset of the ports (on customer

facing ports, or on network facing ports, for example).

What 802.1X-2010 does not provide®! is management

of the CAK cache (802.1X 12.6) other than per port.

This could be taken as implying that cached CAKSs can LLDP
only be used by the port that originally cached them??, (PoE)
and makes no provision for pre-shared keys (PSKSs)

for use by any one of a group of ports. A better

structure needs discussion—one idea would be to

explicitly tie CAK caching, subsequent use, and
pre-provisioning to NIDs, thus avoiding having to

introduce another type of grouping. This tie would LLOP
also allow the existing per-port per-participant view of \Mu'tip'exer
CAKs, both recently acquired and activated from IR erer REETr e
cache, to be retained, while allowing the creation of an i ; i ;
explicit CAK Cache object under PAESystem.

802.1AX’s detailed description of link
aggregation23:24,

LLDP

(Peer info)

Aggregator
SAP

Frame
Collection/
Distribution

Aggregator
Parser/
Multiplexer

Aggregator
Parser/
Multiplexer

Control
Parser/Mux
Control Port

Control
Parser/Mux
Control Port

Control
Parser/Mux
Data Port

Control
Parser/Mux
Data Port

LLDP
(PoE)

Control
Parser/
Multiplexer

Control
Parser/
Multiplexer

LLDP Parser/
Mux Control Port

LLDP Parser/
Mux Control Port

Control
Parser/Mux
Down Port
(LLDP Parser/
Mux Data Port)

Control
Parser/Mux
Down Port
(LLDP Parser/
Mux Data Port),

LLDP
Parser/
Multiplexer

(LLDP Parser/ (LLDP Parser/

Mux Down Port)
Aggregator Port

Mux Down Port)
Aggregator Port

802.3

(802.1AC)

802.3

(802.1AC)

Note that Figure 7 just shows the interaction of a
system wide LACP (Link Aggregation Control
Protocol) entity with the two 802.3 Aggregation Ports
currently attached to the Aggregator. Figure 8 is a

9N the 802.1AEcg Figure 10-6 UML, CipherSuite information is shown as contained by the SecY System that also contains each of the Controlled Ports (and
thus in the preferred mapping to YANG models, each of the PAE/SecY tuples). Since each port has its own list of supported Cipher Suite information, the
SecYSystem can include ports of different capabilities and attributes, there is no need to have different SecY System within any managed system.

20802.1X Figure 12-3 (PAE management information).

21or discuss in 12.9.2/Figure 12-3 or in the MIB. See Figure 12-2 portnumber>PAE>mka>Kay>participants>Participant for a per port view of the contents of
the CAK cache.

22This was not the intent in the development of 802.1X-2010, which is why the NID was introduced.

23802.1AX-2014 Figure 6-2 with the addition of the LLDP Parse/Multiplexer (one of the possible Protocol Parser/Multiplexer’s described in 6.2.7) as
described in the last paragraph of 6.2.2.

240mitting details particular to DRNI and DRCP, which are not considered for the present.

Revision 0.3 July 10, 2016 Mick Seaman 5

Protocol entities, service access points, and YANG models

UML view of the management parameters. The
majority of the management parameters are associated
with the individual Aggregation Ports, rather than with
each of the Aggregators (though the latter cannot be
neglected). Figure 8 also shows that a managed system
might contain a number of separate aggregating

LagSystem

J aggregatingSystem
AggregatingSystem

system, each with its own System ID and System
Priority (802.1X-2014 7.3.1.1.4). However the
existence of each of these can be inferred from
different configuration of those parameters for
individual Aggregation Ports?®,

/I MACAddress system|D;
/I LacpSystemPriority systemPriority;
* aggregationPortNumber @aggregatorPortNumber
Adggregator // .1AX also specifies other Aggregator parameters included by the base IETF interface (for YANG) or the RFC 2863 interfaces
1l group (for the MIB), with the exception of aggregatePortNumber they have been omitted from this (version of this) UML figure.
/IPortNumber aggregatorPortNumber; /I 'ifindex
bool aggregateOrindividual; "
Ticks? collectorMaxDelay; "
int unknownProtocolFrames; /1 (7.3.1.1.29)
:,k o ’ &aggregatorConversations
Q 15y
% S AgaregatorConversations //
[l
ﬁ % ConversationAlgorithm aggregatorPortAlgorithm, partnerAdminPortAlgorithm; //
) 8 LinkIDListMapTable conversationAdminLink, // (7.3.1.1.35)
g g ServicelDMapTable adminServiceConversationMapTable; // (7.3.1.1.38)
U'_f D MD5Digest partnerAdminPortConversationListDigest, // (7.3.1.1.36)
-] partnerAdminConvServiceMappingDigest; // (7.3.1.1.39)
bool adminDiscardWrongConversation; // (7.3.1.1.37)
lacp
AgaregatorLacp // AaggregationPortConversations //
MACAddress actorSystem|D, partnerSystemID; // ConversationMap conversationPasses,
LacpSystemPriority actorSystemPriority, partnerSystemPriority; // conversationCollected;
LacpKey actorAdminKey, actorOperKey, LinkNumberID portLink, partnerAdminLink;
partnerAdminKey, partnerOperKey; // WitrTime portWtrTime;
AdggregationPortLacp //
MACAddress actorSystem|D, partnerAdminSystem|D, partnerOperSystemID; 1
LacpSystemPriority actorSystemPriority, partnerAdminSystemPriority, partnerOperSystemPriority; //
LacpKey actorAdminKey, actorOperKey, partnerAdminKey, partnerOperKey; //
PortNumber selectedAggregator, attachedAggregator; //
LacpPortNumber actorPort, partnerAdminPort, partnerOperPort; //
LacpPortPriority actorPortPriority, partnerAdminPortPriority, partnerOperPortPriority; //
LacpState actorAdminState, actorOperState, partnerAdminState, partnerOperState; //
lacp
lacpDebug
AggregationPortD 7.3.4 AggregationPortStat 7.3.4
LacpRxState rxState; // int lapcPDUsRx, markerPDUsRX,
Centiseconds lastRxTime; // responsePDUsRX, unknownPDUsRX,
LacpMuxState muxState; // illegalPDUsRX, lacPDUsSTX,
PrintString muxReason; // markerPDUsTX, responsePDUSTx
LacpChurnState actorChurnState, partnerChurnState; //
int actorChurnCount, partnerChurnCount,
actorSyncTransitionCount,
partnerSyncTransitionCount,
actorChangeCount, partnerChangeCount

AaggregationPort

1l 1AX specifies other Aggregation parameters included by the base IETF interface (for YANG) or the RFC 2863
Il interfaces group, with the exception of aggregationPortNumber they have been omitted from this UML figure .

/IPortNumber portNumber;

/l'ifindex for the aggregation port

Figure 8—Link Aggregation management information (rough draft)

Revision 0.3 July 10, 2016

Mick Seaman 6

Protocol entities, service access points, and YANG models

Figure 9 provides an appropriate external management
view of the complexities of Figure 7, showing both the
MIBs ifIndex/ifStack information and the mapping to
YANG interfaces.

name =‘LAGI’

if-index =22

if-type =
ieee8023adLag

LLDP
(Peer neighbor
info)

*higher-layer-if = ‘IP’,
Aggregator ‘LLDP (Peer ..)

SAP
*lower-layer-if = ‘802.3’

Collection, Distribution,
Aggregator params,
marker, responder,

Aggn. Port
params,tx,

802.3

(802.1AC)

(802.1AC)

e ————— ———

~N e —

~N— e ——

name = ‘802.3Portl’

if-index = 19

if-type = ethernetCsmacd
*higher-layer-if = ‘LAG1’, ‘LLDP (PoE..)’
*lower-layer-if = ‘id phys. connector?’

Figure 9—Link Aggregation: YANG interfaces

In Figure 5, the PAE augmenting the Controlled Port
interface uses the service provided by the lower
referenced interface. In contrast, in Figure 9, the
LACP parameters that are associated with each 802.3
SAP use the same provided by that interface.

4. Link Aggregation with MACsec

As specified in 802.1AE Clause 11, MACsec secures
each of the individual links when used with link
aggregation®®. Figure 10 shows the interface stack.
Since LACP uses the secured service provided by
MACsec, each of the systems participating in an
aggregation can be sure that the LACP System
Identifiers and Keys it receives have been sent by a
trusted partner. It is possible, of course, that a trusted
system simply unaware of its incorrect or conflicting
system identifier—which is more likely if that is based

on a randomly chosen or other local MAC address?’
for privacy.

LLDP

(Peer neighbor
info)

name =‘LAGl’

n&g“g :1 //" o7/ T~ ifHindex =22
] secl’ if-type =
if-index = 40 e

ieee8023adlLag

Aggregator

if-type =
macSecControlledIF

\
|
I
|
I *higher-layer-if =
: : LR
*higher-layer-if = :
|
|
|
I

‘LLDP (Peer ..y
‘IP’, ‘LLDP (Peer ..)’

Collection, Distribution,) | *|ower-layer-if =

*lower-layer-if = Aggregator params, . 9
¢ yv I\ marker, responder. MACsecl’,
Ethernetl’, // ‘MACsec2'
‘Ethernet2' N ——--

LACP,
Aggn. Port

Controlled Controlled

Port

LACP,
Aggn. Port
params,tx,r:

Port

e ———————

SAP
(802.3/802.1AC)
Common Port

802.3
(802.1AC)

802.3

(802.1AC)

\ / N\
~ -

~ -

name = ‘802.3Portl’

if-index = 19

if-type = ethernetCsmacd
*higher-layer-if = ‘LAG1’, ‘LLDP (PoE..)’
*lower-layer-if = ‘id phys. connector?’

Figure 10—Link Aggregation and MACsec

One way for 802.1X to help here would be to compare
authentication credentials for the links, checking for a
match, though that might involve more knowledge
than the systems have with more constraints on the
credentials and their authentication than is desirable. A
better way would be to start an MKA instance for the
same {CAK, CKN} on each of the links, ensuring that
they are all attached to the same partner 28:2°.

25Question. What does it mean if different Aggregation Ports share the same System ID but have different System Priority.

26An attacker would not be able to successfully inject or decipher secure data if MACsec was used over the aggregated links, but a large percentage of frames
might be lost as an untrustworthy link might not provide connectivity to the correct peer. Applying MACsec before distributing the data across the links would

also defeat attempts at conversation balancing.
27802.1AX currently mandates use of a globally unique address.

28provided of course that the partner hasn’t shared that over a common service, but there is no excuse for the partner being unaware of such sharing.
29No new MKA behavior/checking required for correctness, so much simpler than attempting to use one link to distribute SAKs that are used by both.

Revision 0.3 July 10, 2016

Mick Seaman 7

Protocol entities, service access points, and YANG models

5. CFM, MACsec, and Link aggregation

While CFM uses a set of shims that can, in principle,
be positioned anywhere in the interface stack, 802.1Q
is quite clear where they should be placed.

Up MEPs and Down MEPs that monitor individual
service instance (distinguished by VID or other
service instance selector) and their associated MIPs
are at the top of each Bridge Port’s interface stack®,
immediately below the MAC Relay Entity’s
Forwarding Process and above the support of the EISS
(802.1Q 6.9), with a precise ordering between the
individual shims for Up, Down, MHF, and MD Level.

The only MEP that can be placed elsewhere in a
Customer Bridge Port’s®! stack is a Down MEP for all
data (irrespective of service selector)32, below Bridge
Port Transmit and Receive (802.1Q 8.5). When Link
Aggregation is being used such a Down MEP should
be configured to protect the connectivity provided by
individual LANs—there is no implementation
independent way to constrain frames sent and receive
from higher MEPs to a particular link33. That Down
MEP should be positioned above MACsec34. However
that positioning, as a user of the Controlled Port, does
not preclude managing it as an augmentation of the
same interface—just as the Aggregation Port
components of LACP augment the Controlled Port
interface in Figure 10.

However, while MEPs (and MIPs) can be said to be
instantiated in an interface stack, they are created and
used as a result of operations on Maintenance
Association managed objects that span the bridge35
(see 802.1Q Figure 12-1). Only a small part of their
functionality is primarily related to an interface stack
through the CFM Stack managed object (12.14.2,
supporting a read operation to discover what MEPs or
MHFs have been instantiated as a result other
configured rules) and the Configuration Error List
managed object (12.14.4, supporting a read operation
that returns detected configuration and resource
exhaustion errors). Operations for both of these take
service instance selectors (e.g. a list of VIDs), and are
only available to the owner of the bridge (as opposed
to maintenance domain administrators making use of
configured services). Since each Maintenance

Association managed object is also identified by a
service instance selector it is questionable whether
organizing the CFM Stack and Configuration List
primarily by augmented interface would be useful.

6. Interface counters

The IETF YANG Interface management model
maintains separate counts for unicast, multicast, and
broadcast packets, for both receive and transmit.

Of course an 802.3/Ethernet interface doesn’t
distinguish between these so far as its own operation is
concerned, these management statistics are being
collected to support the (management of) the
interfaces client/user.

Of course, if the 802.3 interface’s client is a MACsec
SecY or an Aggregation Port, or more specifically an
augmented interface including one or both of these, as
in Figure 10, then the operation of that client is also
independent of the distinction—both a SecY and an
Aggregation Port will apply exactly the same
processing to unicast, multicast, and broadcast frames.
However this client interface will also collect separate
counts for unicast, multicast, and broadcast—for the
benefit of its client.

Of course, if that client is actually a separate
augmented interface—which seems likely in the case
of a Bridge Port—its operation is also unaffected by
the distinction between the unicast, multicast, or
broadcast nature of frames at its lower interface3®. The
operation of the Bridge Port’s client(s) is dependent on
the distinction. Collecting separate statistics for that
upper interface does serve a purpose, although one
bundled set of statistics is not a great help when
considering a protocol entity locally attached to a
Bridge Port—any counts relevant to its operation are
likely to be swamped by those for relayed frames.

If interface statistics were associated with the
clients/users of interfaces, rather than with the
provider/supporter of each interface’s services then
they could be omitted where irrelevant and
strengthened where useful (e.g. distinguishing counts
for the separate types of multicast their controlling
entities produce/consume where relevant.

30802.1Q-2014 Figures 22-1 and 22-4 (though | believe the latter has significant problems).
31Eurther detailed considerations apply to CFM in Provider and Backbone Bridges, but do not invalidate these general conclusions.
325hown as associated with MD Level 1 in 802.1Q Figure 22-1 and MD Level 0 in Figure 22-4.

33g5ee 802.1Q 22.1.8 4th Para for discussion.
345ee 802.1Q 22.1.8 2nd para and following bullet items.
350 other enclosing system.

36All received frames go, from a modeling point of view, to the MAC Relay Entity (where they may be filtered) even if they are to be received by a local entity

attached to the Bridge Port.

Revision 0.3 July 10, 2016

Mick Seaman 8

	Protocol entities, service access points, and YANG models
	1. Terminology
	2. MACsec interface stacks
	3. Link Aggregation
	4. Link Aggregation with MACsec
	5. CFM, MACsec, and Link aggregation
	6. Interface counters

