Qbv Optional for Fronthaul over Ethernet

David Chen, Eero Ryytty 16-MAR-2016

Fronthaul over Ethernet bridged network

- The Common Public Radio Interface (CPRI) is commonly used radio interface for fronthaul
- The following CPRI IQ data requirements are currently specified in IEEE P802.1CM/D0.2 with a 10km minimum of the maximum geographical distance between REC and RE
 - Latency: 100μs
 - Frame Loss Ratio: 10⁻⁶ to 10⁻⁹

CPRI fronthaul traffic

- CPRI generates a Basic Frame (BF) for each chip time ($T_c = 1/f_c = 1/3.84$ MHz = 260.42ns) with 1 Control Word (CW) and 15 Words of I/Q sample bits from different AxC's
- 256 BFs form a Hyper Frame (HF) which represents a Symbol (66.67us) and the 1st CW of a HF is used for synchronizing the sender and the receiver of the CPRI bit stream
- 150 HFs form a 10ms Radio Frame, each one denoted by a BFN
- CPRI line rate percentage over 10GE:

CPRI Line Rate	CPRI Line Bit Rate [Mbit/s]	Length of Word [bit]	Length of BF [bit]	BF % over 10GE
1	614.1	8	128	~5%
2	1228.8	16	256	~10%
3	2457.6	32	512	~20%
4	3072.0	40	640	~25%
5	4915.2	64	1024	~40%
6	6144.0	80	1280	~50%
7	9830.4	128	2048	~80%

* According to IEEE1904.3 D0.4, the mapper shall remove the 8B/10B line coding used by CPRI for line rate options 1 to 7

Quick background on 802.1Qbv Time Aware Shaper (TAS)

- Initial motivation of IEEE 802.1Qbv TAS is to protect time-critical, <u>lower</u> bandwidth, and highly predicable control traffic in industrial and automotive applications
- IEEE 802.1Qbv TAS uses time-aware scheduling to manage link access for different traffic classes
- For each traffic class, there is an associated Transmission Gate that allows frames to transmit when the gate is open and blocks frames from transmission when the gate is closed
- To prevent frames of a traffic class from being transmitted after its gate is closed, 802.1Qbv TAS defines guard bands. From the start of a guard band until the gate is closed, no new frames of the corresponding class are allowed to start transmission.
- In an implementation that does not support enhancements for scheduled traffic, all gates are assumed to be permanently in the open state
- A programmable gate control list associated with each Port is used to set its associated gate open or close
- Centralized control or decentralized (e.g. hop-by-hop) control of Qbv configuration/scheduling is not specified in 802.1 TSN; in complex networks configuration becomes difficult

Qbv defines a schedule of time-aware gates which opens/closes traffic queues for TX

[1] Analysis of Ethernet-Switch Traffic Shapers for In-Vehicle Networking Applications, Sivakumar Thangamuthu, et al., 2015 Design, Automation & Test in Europe Conference & Exhibition (DATE)

Higher CPRI rate may not be Qbv friendly

CPRI Line Rate 2: 1.2288 Gbps Each CPRI stream occupies ~10% of a cycle (8B/10B line coding removed)

CPRI Line Rate 3: 2.4576 Gbps Each CPRI stream occupies ~20% of a cycle (8B/10B line coding removed)

CPRI Line Rate 4: 3.072 Gbps Each CPRI stream occupies ~25% of a cycle (8B/10B line coding removed)

802.1Qbv may significantly reduce jitter [2]

Ingress delaying needed for CPRI streams not interfering each other.

BG traffic squeezed

More ingress delaying to avoid CPRI racing/collision BG traffic further squeezed

Even more ingress delaying

NOKIA [2] http://www.ieee802.org/1/files/public/docs2015/cm-farkas-applicability-of-bu-and-bv-1115-v01.pdf

Conclusion

7

- As we discussed in [3], a lot can be done just with basic system level optimizations:
 - Using QoS
 - Desynchronize transmission
 - Packet size optimization
- Cost of deterministic behavior is complexity in configuration
 - The larger system the more complex this becomes
- Ethernet fronthaul should also be kept simple
 - No difficult features in use
 - Adopt system to tolerate some amount delay variation
- Qbv should be an optional feature

