Nokia Networks

NOKIA

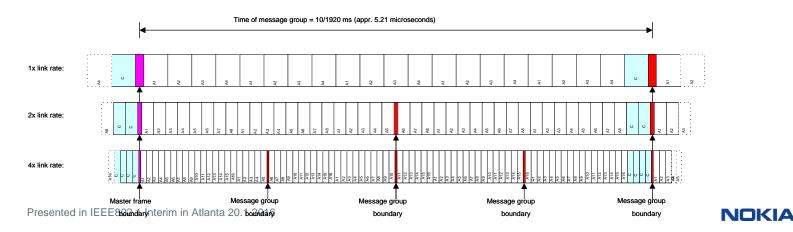
Practical view to Packet Delay Variation (PDV) management

Ethernet fronthauling – IEEE802.1CM

- Eero Ryytty
- 18-1-2016

Motivation

- PDV can be minimized in system with the mechanisms introduced by IEEE802.1TSN
- System can be also built to tolerate PDV
- Optimal solution is
 - Limit PDV with reasonable effort
 - Build system to tolerate smallish PDV
- This presentation will first show experience from limited PDV packet based fronthaul and show some Ethernet simulation results without TSN features

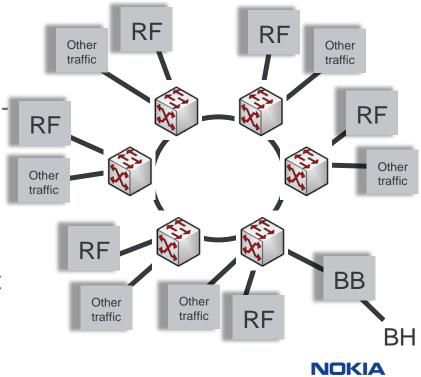


Existing packet based Fronthaul OBSAI background

- OBSAI is targeted to same use cases as CPRI
 - Optical/electrical point-to-point connections in Fronthaul
 - OBSAI is packet based ATM like technology
 - Fixed size packets (16 bytes payload, 3 bytes header)
 - Address based switching
 - Bandwidth reservation though rule based scheduling
- In commercial use since 2005

Packet delay variation in OBSAI

- Due to OBSAI's frame structure there is some delay variation by default.
- Frame length = 10 ms = n*1920 message groups, where n is link rate multiplier. 1x rate equals 768Mbps
- 1 message group contains 21 message slots (20 data message slots + 1 control message slot at 1x link rate. Control slots are grouped at higher rates so that they meet timewise at all link rates.)
- Maximum delay variation experienced is ~250ns.

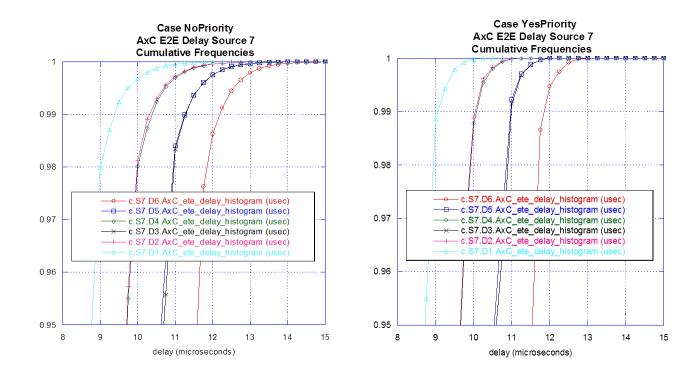


Experience from OBSAI

- Very deterministic behavior is achieved with explicit capacity allocation
 - Transmission rules define which message locations are in use for which AxC
- Basically anything is possible, but in complex networks configuration becomes difficult
- From our perspective Ethernet can also be motivated by simplicity at network level – easier to manage

Ethernet experiments in rather complex use case

- Use case:
 - 6 radio sites in ring sending IQ over Ethernet
 - Other traffic with variable packet size (40-1400 bytes – average being ~550 bytes)
 - Ring connection to centralized baseband processing
- Traffic mix in network
- Max 4 switches between any end point


Results Figures

- A lot can be done just with basic system level optimizations:
 - Using QoS
 - Randomize transmission times
 - Packet size optimization (keep packet size small)

with		Medium other traffic	High Other traffic	Very High Other traffic
	Bottleneck Link Utilization	93%	95.6%	99.6%
	No Priority – Worst 99%-ile	12.2 us	13.6 us	> 50 us
	IQ E2E Delay			(~ 80 us)
n	No Priority – Worst 99%-ile	1.65 us	2.13 us	2.85 us
	IQ Differential Delay			
	With Priority – Worst 99%-ile	11.9 us	12.1 us	12.5 us
	IQ E2E Delay			
n	With Priority – Worst 99%-ile	1.25 us	1.7 us	2.0 us
	IQ Differential Delay			
l)	No Priority – No synchronization	8.9 us	N/A	N/A
	- Worst 99%-ile IQ E2E Delay			
	No Priority – No synchronization	1.9us	N/A	N/A
	-Worst 99%-ile IQ Differential			
	Delay			

Results Charts

Conclusions

- Cost of deterministic behavior is complexity in configuration
 - The larger system the more complex this becomes
- Ethernet fronthaul should also be kept simple
 - Should try to find correct balance between required features from network and allow some delay variation tolerance in the system
 - Low number of hops less features, high number of hops more control needed.

