Tracking 802.11 stations without relying on the link layer identifier

Mathy Vanhoef[†], Célestin Matte[‡], <u>Mathieu Cunche</u>[‡], Leonardo S. Cardoso[‡], Frank Piessens[†]

†iMinds-Distrinet, KU Leuven, [‡]Univ Lyon, INSA Lyon, Inria, CITI, France

IEEE P802E - 14th April 2016

- The paper
 - Why MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms. Accepted at AsiaCCS 2016.

- MAC address randomization proposed to prevent tracking
 - Idea of a disposable link-layer identifier
 - Being deployed in major OSes
 - iOS 8, Android 6, Windows 10, Linux kernel 3.18
- Is it enough to prevent tracking?
 - Probe requests contains a lot of other information
 - Can we track devices despite the lack of a stable link-layer identifier?
 - Can we link together probes from the same device based on their content?
 - Can we force a device to reveal its real MAC address?

- Attacker capabilities
 - Monitoring wireless channels
 - Injecting 802.11 frames
- Attacker objectives
 - Group together frames belonging to the same device
- Link-Layer identifier is assumed to change periodically

Datasets

Table : Details of the probe requests datasets.

Dataset	Lab	Train-station	Sapienza ¹		
#MAC addr.	500	10 000	160 000		
#Probe Req.	120 000	110 000	8 million		
Time frame	Oct '15	Oct/Nov '15	Feb/May '13		
Location	Lab	Train Station	Rome		

¹Marco V. Barbera et al. *CRAWDAD dataset sapienza/probe-requests* (v. 2013-09-10). Downloaded from http://crawdad.org/sapienza/probe-requests/20130910. Sept. 2013. DOI: 10.15783/C76C7Z.

- Information elements (a.k.a. tagged parameters, or tags)
 - Indicates the support of capabilities
 - Ex. Supported Rates, High Throughput capabilities and Interworking Capabilities
- High diversity in term of values and in term of information elements present in probe requests
 - Idea: Exploit this diversity to fingerprint devices

```
▼Tag: HT Capabilities (802.11n D1.10)
  Tag Number: HT Capabilities (802.11n D1.10) (45)
  Tag length: 26
▼HT Capabilities Info: 0x100c
   .... .... 0 = HT LDPC coding capability: Transmitter does not support receiving LDPC coded packets
   .... .... ... ... ... = HT Support channel width: Transmitter only supports 20MHz operation
   .... 11.. = HT SM Power Save: SM Power Save disabled (0x0003)
   .... .... 0 .... = HT Green Field: Transmitter is not able to receive PPDUs with Green Field (GF) preamble
   .... .... ..0. .... = HT Short GI for 20MHz: Not supported
   .... .... .0.. .... = HT Short GI for 40MHz: Not supported
   .... 0... = HT Tx STBC: Not supported
   .... ..00 .... = HT Rx STBC: No Rx STBC support (0x0000)
   ......0....... = HT Delayed Block ACK: Transmitter does not support HT-Delayed BlockAck
   .... 0... = HT Max A-MSDU length: 3839 bytes
   ...1 .... = HT DSSS/CCK mode in 40MHz: Will/Can use DSSS/CCK in 40 MHz
   .... = HT PSMP Support: Won't/Can't support PSMP operation
   .0.. .... = HT Forty MHz Intolerant: Use of 40 MHz transmissions unrestricted/allowed
   0... .... = HT L-SIG TXOP Protection support: Not supported
▼A-MPDU Parameters: 0x19
   .... ..01 = Maximum Rx A-MPDU Length: 0x01 (16383[Bytes])
   ...1 10.. = MPDU Density: 8 [usec] (0x06)
   000. .... = Reserved: 0x00
 ▶Rx Supported Modulation and Coding Scheme Set: MCS Set
▶HT Extended Capabilities: 0x0000
 ▶Transmit Beam Forming (TxBF) Capabilities: 0x0000
 ▶Antenna Selection (ASEL) Capabilities: 0x00
```

Figure: Example of the HT_Extended_capabilities Information Element

Empirical evaluation using the datasets

- Considered metrics
 - Fraction of affected devices
 - Entropy: amount of identifying information
- Single Information Elements
 - Can provide up to 5.24 bits of entropy
 - Some IE are found in almost all device (Supported rates)
 - Ex. HT capabilities info (Train-station): 4.74 bits of entropy, 90% of devices affected, stable for 95.9% devices
- Global fingerprint based on most common IE
 - Entropy: 7.03 bits (Train-station)
 - Enough to uniquely identify 1 device among 128 (in average)

Element	Entropy (bits)		Stability			Affected devices			
	Lab	Station	Sapienza	Lab	Station	Sapienza	Lab	Station	Sapienza
HT capabilities info	3.94	4.74	3.35	96.0%	95.9%	99.6%	90.9%	90.0%	81.1%
Ordered list of tags numbers	4.23	5.24	4.10	93.6%	94.2%	91.2%	100%	100%	100%
Extended capabilities	2.59	2.57	0.064	98.5%	99.4%	99.9%	55.4%	51.3%	0.6%
HT A-MPDU parameters	2.59	2.67	2.54	97.8%	99.1%	99.7%	90.9%	90.0%	81.1%
HT MCS set bitmask	1.49	1.43	1.16	97.6%	99.0%	99.9%	90.9%	90.0%	81.1%
Supported rates	1.18	2.10	1.36	98.2%	95.9%	99.8%	100%	99.9%	100%
Interworking - access net. type	1.08	1.11	0.006	99.6%	99.6%	100.0%	47.5%	46.1%	0.04%
Extended supported rates	1.00	1.77	0.886	98.0%	96.3%	99.4%	99.1%	72.6%	99.7%
WPS UUID	0.878	0.788	0.658	98.2%	99.2%	99.6%	8.4%	5.5%	3.6%
HT extended capabilities	0.654	0.623	0.779	97.8%	98.9%	99.9%	90.9%	90.0%	81.1%
HT TxBeam Forming Cap.	0.598	0.587	0.712	97.8%	98.9%	99.9%	90.9%	90.0%	81.1%
HT Antenna Selection Cap.	0.579	0.576	0.711	98.0%	98.9%	99.9%	90.9%	90.0%	81.1%
Overall	5.48	7.03	5.65	92.5%	90.7%	88.8%	-	-	-

Wi-Fi Protected Setup (WPS)

- Information element dedicated to WPS
 - Includes a UUID field
- Universally Unique Identifier UUID
 - A unique identifier by definition
 - Generally derived from the MAC address²
 - Could be reversed to reveal the original MAC
- Re-identification attack on the datasets
 - UUID derived from the real Wi-Fi MAC address in 75% of the cases

²P. Leach, M. Mealling, and R. Salz. *A Universally Unique IDentifier (UUID) URN Namespace*. RFC 4122 (Proposed Standard). Internet Engineering Task Force, July 2005. URL: http://www.ietf.org/rfc/rfc4122.txt.

Predictable fields

- Predictable fields in 802.11 frames
 - Fields with a content that can change over time
 - Value in a given frame can be predicted from the previous frames
 - Example: Sequence Number field
 - Incremented for each frame
 - Not reset when MAC address is changed in iOS³
 - Can be used to trivially defeat MAC Randomization

³ Julien Freudiger. "How Talkative is Your Mobile Device? An Experimental Study of Wi-Fi Probe Requests". In: *WiSec.* 2015.

Scrambler seed

- Scrambler in OFDM frames of 802.11 PHY
 - Scrambler used from the SERVICE field to the end
 - Seed contained in the 7 first bits of SERVICE field

- Scrambling sequence generated by a Linear Feedback Shift Register (LFSR)
 - Seed set the initial state of LFSR

- Scrambler seeds can be predictable
 - Bloessl. et al. showed that it is the case for two prototype implementation of 802.11p⁴
 - No specification in the standard on how to generate the seeds
 - Implementation choice taken by the vendor
- What about commodity 802.11 implementations?

⁴B. Bloessl et al. "The scrambler attack: A robust physical layer attack on location privacy in vehicular networks". In: ICNC. 2015.

- Study of scrambler seeds in 802.11 commodity hardware
 - Experimental setup
 - 11 Wi-Fi commodity hardware
 - GNU-Radio implementation of 802.11 based on gr-ieee802-11⁵
 - USRP N210
 - Faraday room from FIT CortexLab⁶

 $^{^5}$ Bastian Bloessl et al. "An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio". In: *SRIF Workshop.* 2013.

⁶http://www.cortexlab.fr/

- Observed behaviors
 - Freewheeling: State of the LFSR at the end of a frame is reused for the next frame
 - Sometime with a constant number of shift of the LFSR
 - Constant seed, or limited to a small set (bug ?)
 - Incremental: seed value is incremented by one at each frame

Active attacks

Active attacks

- Karma attack
 - Fake AP with popular SSID
 - Trigger authentication/association from STA
 - STA switch back to their real MAC when connecting to AP
- Exploiting Hotspot 2.0
 - Enable Wi-Fi roaming
 - STA send ANQP query to AP to retrieve list of available services
 - STA switch back to their real MAC addr. when querying
 - Query also contain predictable counter that could help tracking

Countermeasures

- Information elements in probe requests
 - Are they really needed ?
 - Remove them or restrict to a bare minimum
- Scrambler seed and counters
 - Reset to a random value upon MAC addr change
 - Unpredictable scrambler seeds
 - Use a crypto PRNG to generate seeds
 - Chipsets allowing a reset of the seed
- Active attacks
 - Keep random MAC addr. when sending ANQP queries