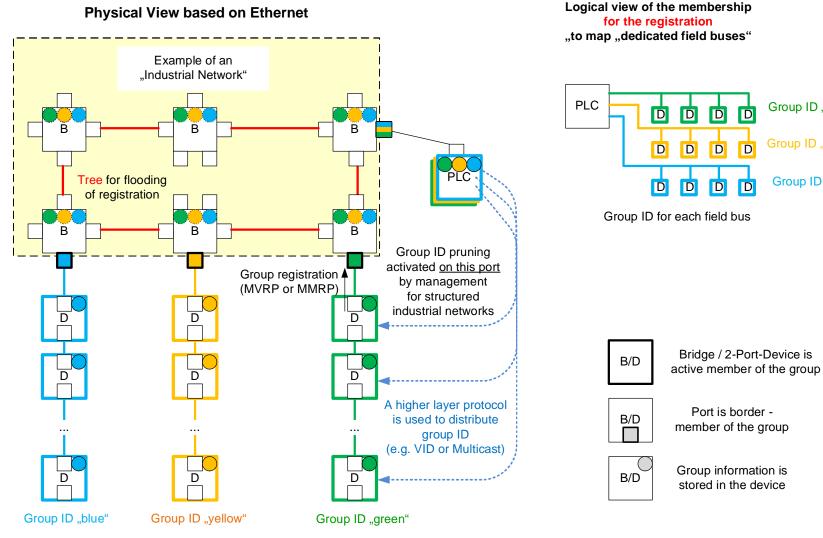


MSRP++ for Stream Registration and Reservation

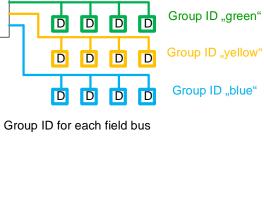
Feng Chen, Franz-Josef Goetz, Marcel Kiessling, Juergen Schmitt Siemens AG

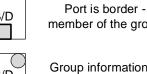
IEEE 802.1 Interim, January 2016

Contents


- Example of a structured industrial network
- Splitting of static and dynamic stream attributes for registration and reservation (why and how)
- Transport mechanisms for MSRP++
- An extended vectoring mechanism for stream reservation

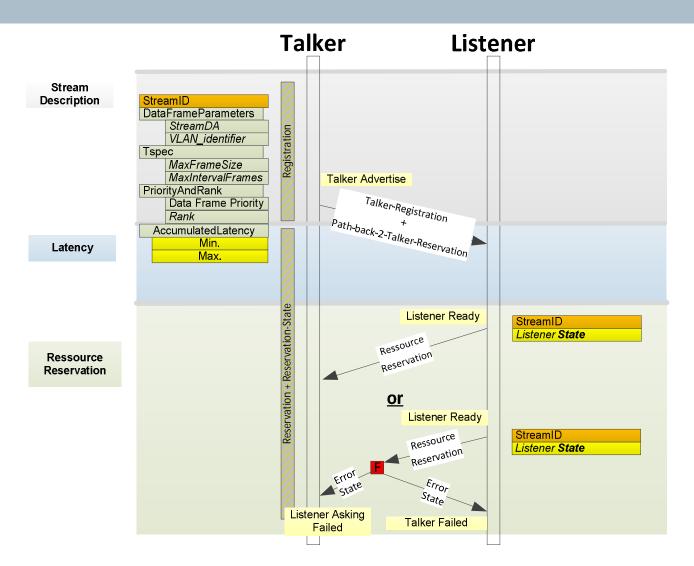
The previous MSRP++ presentation:


http://www.ieee802.org/1/files/public/docs2015/new-goetz-MRPv2-1115-v02.pdf


Logical and Physical View of structured Industrial Network

SIEMENS

for the registration "to map "dedicated field buses"



member of the group

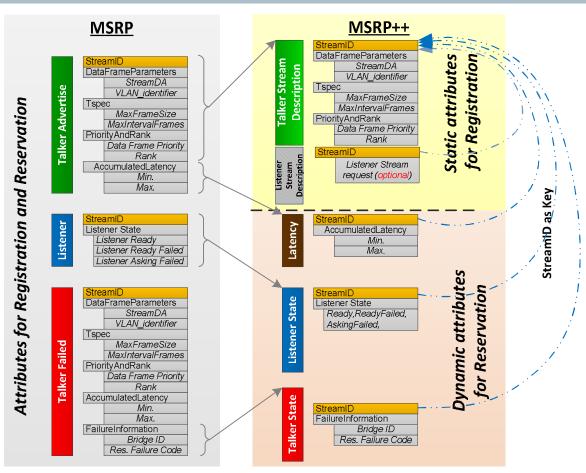
Group information is stored in the device

Page 3 Jan. 2016, Atlanta

Recap Registration and Reservation of current MSRP

SIEMENS

Static and Dynamic Stream Attributes


Why splitting attributes into static (for registration) and dynamic (for reservation)?

- Static Stream attributes stream registration info
 - independent of stream forwarding path → can be flooded on a spanning tree
 - Don't get changed by bridges (constant)
- Dynamic Stream attributes stream reservation info
 - dependent of stream forwarding path → has to be distributed on tree(s) of a data plane
 - Can be changed by bridges

	Static Attributes	Dynamic Attributes
Timing requirements	can be refreshed slowly	must be propagated fast
Topology changes	unaffected, no changes	changes applied to the entire affected stream forwarding path
Size of attributes	huge	small

Due to the different natures of static and dynamic stream information, MSRP++ aims to apply different improvements to stream registration and reservation.

Proposal for Splitting of Attributes into Static Registration and Dynamic Reservation information

SIEMENS

Using the Stream ID as a Key for referencing the Stream Description is important:

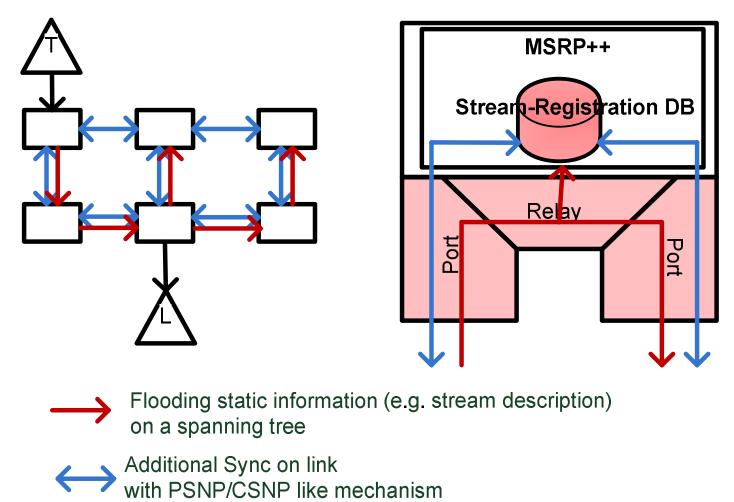
- to split dynamic and static information
- to gain smaller attributes for reservation

Transport Mechanisms for MSRP++

Proposal:

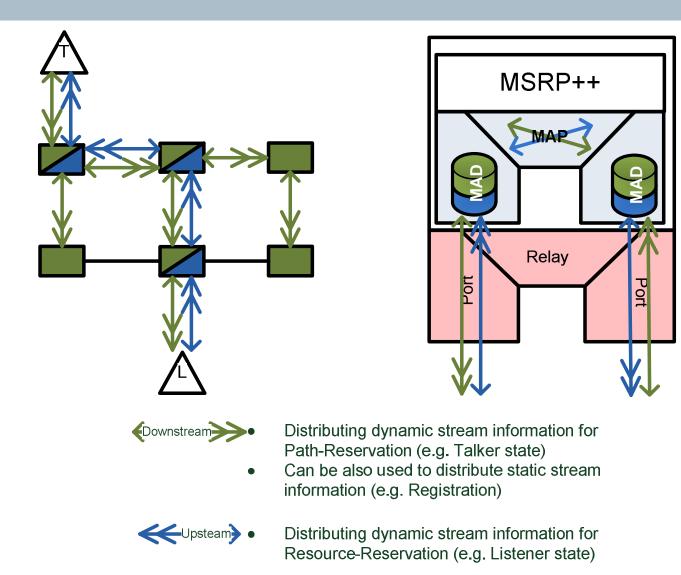
Introducing different transport mechanisms which respect the different natures of stream attributes

IS-IS like:

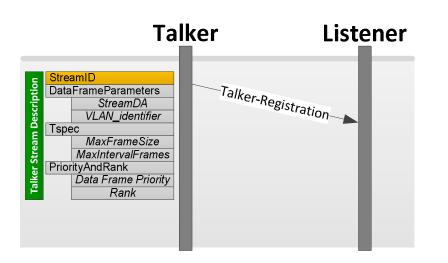

- A flooding mechanism on a spanning tree
- CSNP/PSNP like mechanism as link-layer for additional synchronization on link

LL-IS-IS (Link-Local-IS-IS):

An improved attribute synchronization mechanism between two ports (link-local) utilizing some mechanism of IS-IS (e.g. hold time, checksum,...)

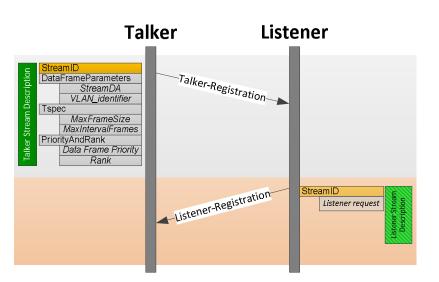


IS-IS like Transport Mechanism


LL-IS-IS (Link-Local-IS-IS) Transport Mechanism

Transportation Mechanisms for Stream Registration

LL-IS-IS



Basic operation:

• Without pruning the Stream description will be distributed on tree(s) of a data plane

Optional

- Stream registration can be pruned by
 - MVRP
 - MMRP
 - ...

IS-IS like

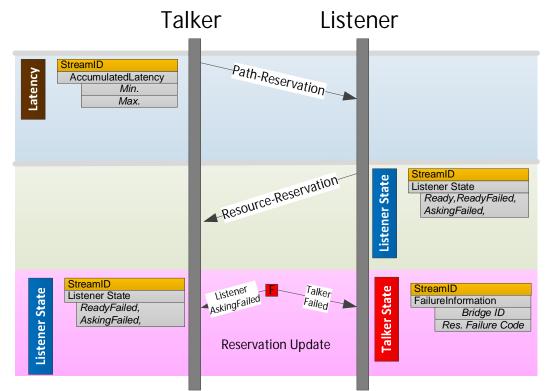
Basic operation:

 The Talker and Listener stream registration will be flooded on a spanning tree + PSNP/CSNP mechanism for synchronization on link

Page 10 Jan. 2016, Atlanta

LL-IS-IS Protocol for Stream Reservation

Path-Reservation


□ Latency (optional) + Talker state is distributed on tree(s) of a data plane

□ Resource-Reservation

 \Box Listener state is reversely distributed on tree(s) of a data plane (Listener \rightarrow Talker)

□ Reservation-Update

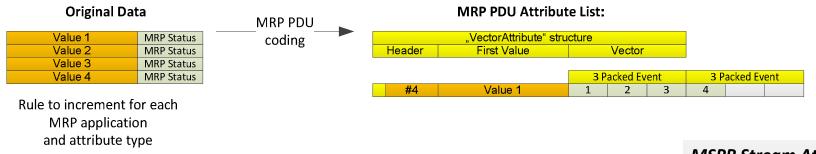
□ Talker- and Listener-State-Changes along the reserved path

MSRP++ Stream Registration / Reservation Models

			typical usage by Bridges Network				typical usage by End Station part of UNI		
	Mechan	Model	1	2	3	4	5		
Registration / Reservation Elements	Weenan	1311							
	IS-IS like	Talker Registration	Х	Х	Х	Х			
	IS-IS like	Listener Registration	Х	Х	Х				
	LL-IS-IS	Talker-Registration					Х		
	LL-IS-IS	Path-Reservation				Х	Х		
	LL-IS-IS	Resource-Reservation			Х	Х	Х		
	LL-IS-IS	Reservation- Update		Х	Х	Х	Х		
	LL-IS-IS	Resource-Reservation		Х		X	X		

Model 1: Stream registration with <u>implicit</u> reservation

Model 4: Stream registration IS-IS like flooded on a spanning tree with LL-IS-IS reservation distributed on tree(s) of data plane
 Model 5: Stream LL-IS-IS registration and LL-IS-IS reservation on link (Bridge←→End-Station ≅ part of UNI)

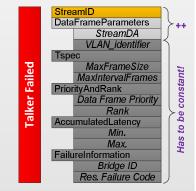

Proposed methods to compress dynamic reservation information:

- Periodical checksum exchange on link (not the focus of this presentation)
- Using Stream ID as KEY for referencing to static Stream Description
- Introducing a <u>more effective</u> vectoring mechanism (compared to current MSRP version)

Recap Vectoring mechanism of current MSRP version

Current MSRP version uses a vectoring mechanism to reduce the size of PDUs.

Principle: If the values follows a given known pattern, then they can be combined in an vector


Problem:

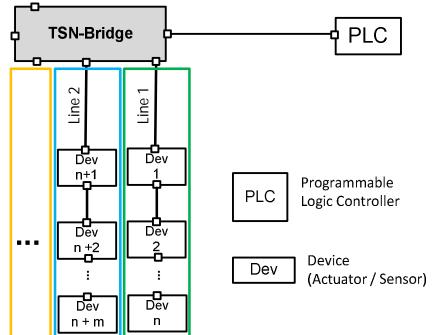
- Huge Stream attributes prevent usage of vectoring mechanism
 → The vector mechanism relies on ascending Stream attributes without gaps*
- The usability <u>highly</u> depends on the application model
 → Stream ID ++, Stream DA++ and constant Stream description with status are highly unlikely

*) Current MSRP version introduces an "ignore" value for the Listener status to enable gaps

MSPR Stream Attribute

SIEMENS

Example (PLC ←→ Actuator / Sensor) for Reservation with Vectoring Mechanism in structured Industrial Networks

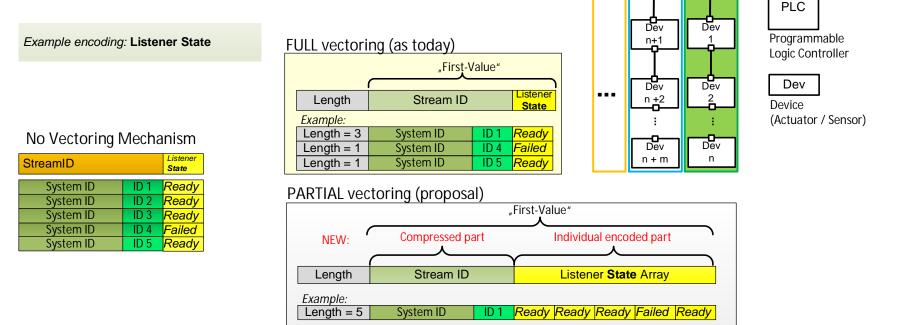


Vectoring mechanism can be used to pack streaming reservation information in structured industrial networks

PLC <-> Actuator / Sensor (Device)

Assumption:

- Bidirectional PLC ←→ Device communication
- Structured network
 - by topology e.g. daisy-chain, ring, comb, spoke, ring with uplink, ...
- Max number of streams
 - Per line (e.g 256 streams) (is scaling issue for 2-port-devcies)
- Max number of streams per PLC (e.g. 256, 512, ... 4096 streams)
- > PLC is responsible for Stream ID generation (PLC ← → Dev [1, n+m])
 => SA part of Stream ID meets PLC System ID
- > Stream ID generation is topology dependent



Page 15 Jan. 2016, Atlanta

MSRP++ Reservation with Extended Vectoring Scheme

Proposal:

Use an extended vectoring scheme for encoding of reservation attributes.

SIEMENS

PLC

TSN-Bridge

Line

Line .

Reservation attributes can be encoded more efficiently using an extended vectoring mechanism, thus improving the scalability of MSRP++.

Next Steps!

Industrial automation has a strong requirement for scalable and performance optimized registration and reservation protocol to support dynamic network configuration.


Our proposals:

- Step 1:
 - Detach the items that are not treated from the existing .1Qcc
- Step 2:
 - Start a new PAR for the items not covered in the existing .1Qcc PAR
 - Work on MSRP++ to improve scalability and performance

A decision is needed to start the protocol work fulfilling the enhanced requirements of professional Audio/Video and Industrial Automation on MSRP!

SIEMENS

Authors

Franz-Josef Goetz Senior Key Expert "System Communication" Siemens AG PD TI AT TM 4 2 Gleiwitzer-Str. 555 90475 Nürnberg Phone: +49 (911) 895-3455 E-Mail: <u>franz-josef.goetz@siemens.com</u>

Jürgen Schmitt Architect Siemens AG PD TI AT TM 4 2 Gleiwitzer-Str. 555 90475 Nürnberg Phone: +49 (911) 895-5338 E-Mail: juergen.jues.schmitt@siemens.com