

User Network Interface & Services

Industrial Requirements on User-Network-Interface for utilizing TSN features in End-Stations

- Multiple applications share the same network
 - Guaranteed bandwidth for multiple applications (OPC_UA, Video, Condition Monitoring, etc.)
 - Guaranteed latency for streams
 - High availability

. . .

- Ad hoc Stream reservations shall be supported
 - Also "static" Stream reservation shall be included
- A standardized interface for failure propagation and diagnostic
 - E.g. diagnostic for Stream registration and reservation
- Different network organization models shall be supported (e.g. fully centralized, centralized, distributed)
 - Network organization model shall be transparent to end-stations

User/Network

Configuration

Info

User/Network

Configuration

User/Network

Configuration

Figure 99-1 — Fully Distributed Model

Configuration

SIEMENS

User/Netwo

Configuration

User/Networ

Talkers

Configuratio

What is a User Network Interface?

Metro Ethernet Forum has already specified a framework for their User Network Interface.

"This may help to focus the discussion within IEEE / TSN about UNI."

L2 UNI Interface to separate Applications from Network

L2 UNI makes use of multiple protocols:

MUST for Stream configuration:

- LLDP (network capabilities exchange between edge-bridge and end-station)
- Stream registration and reservation (MSRP/MSRP++)

<u>Pre-Conditions</u> for better performance and security:

- Precision time sync (e.g. IEEE 802.1AS, IEEE 1588) to maintain a synchronized time
- Registration protocols (MMRP, MVRP) to register MAC addresses and VLANs
- Port security (IEEE 802.1X) to provide network access control

• ...

Additional optional network services:

- Allocation of unique Stream ID
- Allocation of unique Stream DA (e.g. IEEE 1722 MAAP)
- Local Medium Access Control (MAC) Address Usage (802c)

• ...

SIEMENS

Supported ...

LLDP "Extensions" for TSN

UNI requires LLDP to exchange the network TSN capabilities between edge-bridge and end-station

- Supported Stream Traffic Class Specification for Stream Class A, B, C, ...
 - Priority
 - Shaper (CBSC, TAS, Strict Priority, ...)
 - Pre-emption
 - Observation interval
 - Max. bandwidth
 - Scheduled network (optional)
 - Start window
 - End window
 - Coordinated transmission in end-station
 - Start window
 - End window
 -

- Supported Availability
 - Recovery Time <100ms (e.g. RSTP, Shortest Path with recovery)
 - VLAN x
 - Recovery Time <10ms

(e.g. Seamless Redundancy or maximally disjoint redundant path)

- VLAN y
- Recovery Time <1ms

(e.g. Seamless Redundancy or maximally disjoint redundant path)

• VLAN z

. . . .

Still to consider:

UNI requires LLDP to exchange the end-station TSN capabilities between end-station and edge-bridge

User Network Interface for MAC Streams based on OSI Reference Model

Stream / Flow Service Interface in Session Layer (Not Part of Standardization in IEEE 802.1)

"Stream / Flow service interface in session layer for communication between session protocol (e.g OPC_UA@TSN, ...) and lower layer protocol stack within the end-station"

per Stream / source (called Talker in TSN)

- **Stream-Identity** (binding to Stream ID)
- Stream Service Class (binding to traffic class)
- TSpec (SDU size, period, ..)
- C-VLAN (customer VLAN ID)
- Coordinated Transmission (scheduled)
- Availability
- L2 / L3 Service
- ...

per Stream / Sink (called Listener in TSN)

- Stream-Identity (binding to Stream ID)
- C-VLAN (customer VLAN ID)
- Required latency
- ...

User Network Interface for IP Flows based on OSI Reference Model

End Station

User Network Interface for MAC Streams in a distributed organized Traffic Class / Trees ("open systems")

Network Management "Extensions" for Time-Sensitive-Networks

Network Management extensions for MSRP/MSRP++ in TSN

- Distribute **Stream Traffic Class Specification** for SR Class A, B, C, ...
 - Priority
 - Shaper (CBSC, TAS, Strict Priority, ...)
 - Pre-emption
 - Observation interval
 - Max. bandwidth
 - Scheduled network (optional)
 - Start window
 - End window
 - Coordinated transmission in end-station (optional)
 - Start window
 - End window
 -

Network Management extensions for Availability in TSN

- Availability
 - Recovery Time <100ms (e.g. RSTP, Shortest Path with recovery)
 - VLAN x
 - Recovery Time <10ms

 (e.g. Seamless Redundancy or maximally disjoint redundant path)
 VLAN y
 - Recovery Time <1ms
 - (e.g. Seamless Redundancy or maximally disjoint redundant path)
 - VLAN z

SIEMENS

User Network Interface for MAC Streams in a centralized organized Traffic Class / TE-Trees ("open systems")

Why Centralized Network Control Service? Why UNI is so important?

- TSN supports converged networks
- In a converged network each traffic class / tree can be organized by a different organization model Example:
 - Best-Effort-Traffic:
 - "Strict Priority" / "Common Spanning Tree" can be organized decentralized
 - Stream Class Low:
 - "Credit Based Shaper" / "Shortest Path" can be organized <u>decentralized</u>
 - Stream Class High:
 - "Time Aware Shaper" / "Maximally Disjoint Redundant Path" can also be organized by a centralized network control service

Centralized network control is only a service within a converged network!

UNI between end-station and edge-bridge to make the different organization model within a network transparent for the USER!

User Network Interface for MAC Streams in a fully centralized organized Traffic Class / TE-Trees ("within a closed system")

Application Network Service Interface (ANSI) (Not Part of Standardization in IEEE 802.1)

"ANSI for communication between application engineering and network control service for a application specific optimized traffic class within an converged time sensitive network"

per Source (called Talker in TSN)

- Source-Identity (binding to SA Talker)
- Stream-Identity (binding to Stream ID)
- Stream Service Class (binding to traffic class)
- TSpec (SDU size, period, ..)
- C-VLAN (customer VLAN ID)
- Coordinated Transmission (scheduled)
- Availability
- L2 / L3 Service
- ...

For a time sensitive network highest performance can be achieved by combining

- 1. ANSI (interface between application engineering and a centralized network control service)
- 2. Get capabilities of network components regarding TSN features (e.g. pre-emption, synchronization, ...)
- 3. UNI (unified interface between end-station and edge-bridge)

for a closed static system within a converged network!

per Sink (called Listener in TSN)

- Sink-Identity (binding to SA Listener)
- Stream-Identity (binding to Stream ID)
- C-VLAN (customer VLAN ID)
- Required latency
- ...

MSRP/MSPR++ is Part of UNI for Stream Registration/ Reservation

MSRP/MSRP++ between end-stations and edge-bridge for Stream registration/reservation!

Conclusion

The OSI layering model helps to make lower layer mostly transparent for higher layer protocols.

- A higher layer protocol like OPC_UA requires a generalized **Interface** for **Stream-Services** (in this presentation called Stream-Service-Interface) within an end-station
- Tasks of lower layer shall be transparent like:
 - L2 / L3 Stream / Flow
 - Network control (e.g. path computing, Stream registration / reservation, ...)
 - Network management (e.g. Stream traffic classes, supporting availability by network, ...)
 - Lower layer services like Stream-DA allocation
 -
- → One <u>UNI</u> between end-stations and edge-brides for Stream configuration supporting all kinds of network configuration models
- → <u>UNI</u> provides a standardized interface for failure propagation and diagnostics to end-stations

➔ From <u>network perspective</u> the centralized and fully centralized network configuration model is in principle based on the same model!

SIEMENS

Thank you for your attention!

Franz-Josef Götz PD TI AT 4 Gleiwitzer Str. 555 90475 Nürnberg Phone: +49 (911) 895-3455 E-Mail: franz-josef.goetz@siemens.com