Securing Ethernet in the car

Using IEEE 802.1 and related standards

Threat analysis, what's different about the car, network assumptions; traffic segregation, resource segregation; authentication, enrollment, and authorization—who, what, and where; ; message integrity and authenticity; trusted, untrusted, and vulnerable components; fixed and redundant configuration; bandwidth allocation.

Mick Seaman 5/17/2017

Threat analysis

Wide range of network attached devices

- Accident/error/misuse as much of a problem as malice
- Recipients and resources require protection
 - Authenticity and integrity of communication
 - Authorized resource use (resource creation & control)
- Network access/exposure varies across net
 - Open, Normally accessible, Intentionally closed
- Vulnerability
 - Cost/benefit to attacker inc. alternative attack vectors
 - Reputational risk (new technology)

What's different about the car

Small, simple network

- Actual network designs vary
- Coexistence with existing network(s)/bus(es) for some time
- Small number of flows

Network configuration can be/is fixed

- At least while car is in operation
- Fixed filtering/forwarding tables, perhaps by initial build
 - In Normally accessible, Intentionally closed (not Open) components
 - Attached device addresses (changed to) match
- Fixed resource allocation

Repair by halting car

- No running repair
- Can require Internet access to car manufacturer's central database and record for this car

Network assumptions

- Central controller(s) supporting authentication/enrollment
- External communication through/mediated by central controller
- Producer/consumer relationship for many information flows

Traffic & resource segregation

- Traffic segregation by VLAN
- Asymmetric VLANs support information producer/consumer relationship

Enrollment-adding/replacing a component

Locate & authenticate the component/device

- VLAN tag enrollment protocol packets
- Use .1AR IDevID (protocol choices), is it what it claims to be ?
- Has it been stolen/salvaged/traded?

Authorize

Does it belong in this car (configuration)

Add to centralized database for this car

Has to be a reliable record of everything attached to the car network

Provision the component

- Install.1AR LDevID
- Pair-wise MACsec CAK calculated for in-car Authenticator/Key Server component CA (Secure Connectivity Association)
- Key Server distributes CAKs for the component's other CAs

Message Integrity and Authenticity

- Protected by MACsec where vulnerable
 - Particularly in Open locations e.g. trailer hitch
- Perhaps not if physically inaccessible
 - But see `reputational risk'
- MACsec protection may be multi-hop
 - As for Customer Bridge to Customer Bridge over provider network (see 802.1AEcg)
 - Where resource protection en-route not important

Reliability, redundancy

- Existing car networks/buses will persist
- May be less redundancy than we might expect
 - Get to the side of the road/limp home adequate
- Duplication/elimination possible
 - Even in simple network designs
 - Qca like MRTs without the need for protocol
 - Multi-hop MACsec can provide elimination w/o extra protocol and has secure supervisory protocol

Bandwidth allocation

- Asynchronous approach highly desirable
 - Node to node time sync along path requires transitive trust