
LACP Wait To Restore
LACP Wait To Restore specification
Mick Seaman

The ‘Wait To Restore’ (WTR) specification in 802.1AX-2014 could lead to excessive
frame loss1 and was removed in the recent corrigendum. A change to the MUX machine is
sufficient to add the desired functionality, once some other existing specification issues
have been corrected. The usual guarantees of protocol version compatibility are provided2.

__

1. Summary

Figure 1 is the current, coupled control variant of the
MUX machine, once corrected (see 2 below). Figure 2
adds WTR. The layout of these figures follows that of
802.1AX-2014 Figure 6-22 to facilitate comparison.
Figure 3 is a further improvement, with Figure 2’s
functionality and a better division of responsibility
between the Mux machine and the Selection Logic
(see 2.4). Figure 4 is my final suggestion. It replaces
most of the state to state transitions with global
transitions, further reducing clutter and avoiding
transmission of back to back LACPDUs where only
one is wanted. It covers both coupled control and
independent control Mux Machines3.

WTR, as proposed here, works as follows (the reader
may find Figure 3 the easiest reference)4:

1) The design is predicated on the assumption that
attaching/detaching an Aggregation Port to/from an
Aggregator involves significantly more system
effort (at least in some implementations) than
enabling/disabling collection and distribution. The
current 802.1AX specification makes a particular
point of avoiding detaching/re-attaching [6.4.12 pg
56, PORT_DISABLED]5. If that were not the case
the Selection Logic could provide WTR
functionality by using STANDBY and only
reattaching the Aggregation Port when it is to be
brought into service again.

2) In the current specification the Mux machine sets
Actor.Sync TRUE when the Aggregation Port has
been attached to the correct Aggregator (in
MUX:ATTACHED). Receipt of that Sync by the
Actor’s Partner allows that Partner (provided it is
also correctly attached to an Aggregator) to start

collecting received frames and (if its collection and
distribution are coupled) to start transmitting
distributed frames.

An Actor transmitting Sync (TRUE) to a Partner
that couples collection and distribution and has
itself not yet sent Sync (someone has to get the ball
rolling) is therefore indicating its willingness to do
its best to receive frames as soon as it receives Sync
from its Partner (who might start sending data as
soon as it receives the Actor’s Sync). The Actor will
lose data the Partner sends before the Partner’s next
LACPDU (conveying Partner.Sync) is received and
used by the Actor to enable collection6.
Equally an Actor transmitting !Sync (i.e.
Sync == FALSE) indicates that it is not willing to
receive frames in the immediate future. In the
current specification this can be because the
Aggregation Port has not yet selected an
Aggregator, has been made STANDBY, or is not yet
attached to the SELECTED Aggregator.
The proposed WTR specification adds ‘waiting to
restore’ to the above list of reasons for sending
!Sync. The Partner’s required behavior is the same
in all cases, so a Version 1 conformant
implementation without WTR will interoperate. If
both Actor and Partner implement WTR (possibly
with different WTR Timeout values) the link will be
used once both have decided to restore connectivity.

3) When port_enabled becomes FALSE (indicating link
down) the Receive state machine transitions to the
PORT_DISABLED state, setting Partner.Sync
FALSE, but holding on to the Partner’s ID and Key
(unless that ID is received on another port) until the
port_enabled become TRUE once more and then for
anything up to a further LACP ‘Short Timeout’

1Diagnosed by Steve Haddock and discussed in the September 2016 interim.
2Without error prone procedures of the form ‘if he is running a prior version then I’m going to send a variant of this message’.
3These could be trivially separated if maintaining the current Figure 6-21, 6-22 separation is thought important for continuity in the standard.
4 Figure 3 tells the clearer story, but Figure 4 is what you want to implement.
5All references in square brackets are to 802.1AX-2014.
6When an aggregated link is first being brought into service this is less of an issue than might appear at first. One (at least) of the communicating participants
is probably implementing protocol retries at intervals greater than the loss period described, and if both transmit when they (individually) see the link enabled
(Collecting and Distributing both TRUE) then the last of the two to begin transmission should see its initial messages get through (providing that its peer has
actually enabled Collecting and Distributing by the time its LACPDU is transmitted). The details vary by higher-layer protocol. When a link is being added to
an existing aggregate, loss will occur unless some additional conversation distribution protocol makes sure the link is fully useable before distributing data.
Revision 1.0 January 10, 2017 Mick Seaman 1

LACP Wait To Restore
period. This allows the Selection Logic to maintain
its current Aggregator selection until
communication with the Parter is restored. In the
current specification, the Mux machine does not
distinguish between a change to !Partner.Sync as
result of (a) the Partner asserting !Sync and (b) the
link going down (!port_enabled). These have to be
distinguished to implement WTR, otherwise an
Actor might assert !Sync because the Partner has
asserted !Sync, and vice versa, resulting a feedback
loop that can prevent the link from being used
again7. The proposed Mux state machine asserts
!Actor.Sync (in MUX:ATTACHED_WTR) after
!port_enabled until it wishes to attempt to restore
connectivity, but does not change Actor.Sync in
response to !Partner.Sync if the link remains up
(port_enabled).

4) The proposed Mux state machine restarts the WTR
time (wtr_while) while !port_enabled, thus requiring
port_enabled to be continuously true for the
wtr_timeout period before connectivity is restored
(by transitioning to MUX:ATTACHED and setting
Actor.Sync once more). The point here is to avoid
use of an unreliable link, not just to try using the
link at wtr_timeout intervals.

To be more exact, the proposed machine uses a
wtr_while timer variable that is decremented by a
once per second timer tick (until it reaches zero), so
all the conditions and actions are properly
expressed in ‘C’ (and not, e.g., as ‘Start
wait_while_timer’)8. This once per second
decrement means that wtr_while can be restarted
whenever it is not at its initial timeout value and
port_enabled becomes false, without specifying a
potential spin-lock in the state machine9. The state
then actually implements a delay of between
(wtr_timeout) and (wtr_timeout -1) after port_enabled
last becomes true.

2. Current specification issues10

The casual reader is warned that this section is a
historical record of an analysis of the 802.1AX-2014
text, and might want to skip directly to the proposed
Improved Interfaces (see 3 below) assumed by
Figure 2 and subsequent figures after reading the first
few paragraphs below.

2.1 LACP Selection Logic

The LACP Selection Logic is responsible for
assigning Aggregation Ports (each using an individual
MAC providing service over a single link) to
Aggregator Ports (generally abbreviated to
Aggregators). When Link Aggregation was originally
developed, care was taken to not overconstrain the
selection algorithms11. Unfortunately the boundary
between Selection Logic and the state machines was
informally specified, without all the variables required
by state machine logic. Since the existing specification
is strictly incorrect12 it is hard to extend the Mux
machine until the deficiencies described below are
corrected.

2.2 Selection Logic—Operation

“The Selection Logic is responsible for selecting the
Aggregator to be associated with this Aggregation
Port.” [6.4.3 c)]

The Selection Logic is said to be a state machine
[6.4.3 “The state machines are as follows: … c)
Selection Logic …”

“The Selection Logic is invoked whenever an
Aggregation Port is not attached to and has not
selected an Aggregator, and executes continuously
until it has determined the correct Aggregator for the
Aggregation Port.” [6.4.14.1 m) on pg 51]. This
statement is problematic, the two conditions ‘not
attached to’ and ‘not selected’ appear to be both
required for Selection Logic operation, but this is

7This behaviour is the root cause of the poor connectivity diagnosed by Steve. The prior WTR specification implemented hysteresis rather than a true wait
after last !port_enabled to port_enabled transition, so connectivity was possible with luck, but the link could oscillate in and out of connectivity if the Actor
and Partner did not act exactly in synchronization with the same WTR Timeout values and negligible communication delay.
8This is an important general principle since it allows the machines to be coded and run (under the specified state machine conventions) exactly ‘as is’ without
additional interpretation. The latter is a potential source of errors and dispute as to their validity.
9Where the conditions for execution of a state remain true after execution an indefinite number of times. The state machine conventions don’t say anything
about fairness of execution between multiple machines, so under those conditions execution to the exclusion of other machines with executable conditions is
possible.
10All references in square brackets are to 802.1AX-2014.
11The links in any given aggregate can change over time, and uninterrupted service between two LACP capable systems could be provided by a set of links
that has entirely changed over time. If a system identified each Aggregator solely by LAG ID (a tuple including both connected System Identifiers and each of
their LACP Keys that identify their aggregatable links on each) it is easy to see how such Selection Logic would work. However if a system’s ports are often
not aggregated, and are managed by port number, it is convenient to use the same port numbers to identify the Aggregators (one for each Aggregation Port, to
accommodate the scenario where none are aggregated). In this port numbered case, the successive rerouting of links could lead to a scenario where the
connectivity between the Aggregation Ports and Aggregator Ports cannot be explain by the current network configuration. Since the successive rerouting
scenario is probably rare, the recommended selection algorithm is history independent (almost).
12Of course every one can see ‘what the specification was intended to do’ and fix their own implementations accordingly, but such fixes are inclined to differ
and work for some implementations and not others, so it is even hard to come up with an implementation independent statement of what needs to be fixed.
Revision 1.0 January 10, 2017 Mick Seaman 2

LACP Wait To Restore
clearly not the case (otherwise the Selection Logic
would not be able to make a STANDBY link
SELECTED, see 2.6 below, or a failed SELECTED
link UNSELECTED in order to make way for a
STANDBY, see 1.4). Neither of these cases is

addressed by invoking the fact that the operation of the
Selection Logic for one Aggregation Port can cause
changes to the selection for another.

Figure 1—MUX machine state diagram (coupled control, without WTR)

Actor.Distributing = FALSE;
Actor.Collecting = FALSE;
Actor.Sync = FALSE;
NTT = TRUE;
Disable_Collecting_Distributing();
Detach_Mux_From_Aggregator();
Ready = FALSE;

BEGIN

DETACHED

(Selected == SELECTED) ||
(Selected == STANDBY)

WAITING

(Selected == UNSELECTED)

Attach_Mux_To_Aggregator();

ATTACH

(Selected == SELECTED) && Ready

Disable_Collecting_Distributing();
Actor.Distributing = FALSE;
Actor.Collecting = FALSE;
Actor.Sync = TRUE;
NTT = TRUE;

ATTACHED

mux_attached

Enable_Collecting_Distributing();
Actor.Collecting = TRUE;
Actor.Distributing = TRUE;
NTT = TRUE;

COLLECTING_DISTRIBUTING

(Selected == SELECTED)
&& Partner.Sync

(Selected == SELECTED)
&& !Partner.Sync

(Selected == UNSELECTED) ||
(Selected == STANDBY)

(Selected == UNSELECTED) ||
(Selected == STANDBY)

Figure 2—MUX machine state diagram (coupled control, with WTR)

Actor.Distributing = FALSE;
Actor.Collecting = FALSE;
Actor.Sync = FALSE;
NTT = TRUE;
Disable_Collecting_Distributing();
Detach_Mux_From_Aggregator();
Ready = FALSE;

BEGIN

DETACHED

(Selected == SELECTED) ||
(Selected == STANDBY)

wait_while = wait_timeout;

WAITING

(Selected == UNSELECTED)

Attach_Mux_To_Aggregator();

ATTACH

(Selected == SELECTED) && Ready

Disable_Collecting_Distributing();
Actor.Distributing = FALSE;
Actor.Collecting = FALSE;
Actor.Sync = TRUE; NTT = TRUE;

ATTACHED

mux_attached

Enable_Collecting_Distributing();
Actor.Collecting = TRUE;
Actor.Distributing = TRUE;
NTT = TRUE;

COLLECTING_DISTRIBUTING

(Selected == SELECTED)
&& Partner.Sync

(Selected == SELECTED)
&& port_enabled && !Partner.Sync

(Selected == UNSELECTED) ||
(Selected == STANDBY)

(Selected == UNSELECTED) ||
(Selected == STANDBY)

Disable_Collecting_Distributing();
Actor.Distributing = FALSE;
Actor.Collecting = FALSE;
Actor.Sync = FALSE;
wtr_while = wtr_timout;

ATTACHED_WTR

port_enabled &&
(wtr_while == 0)

!port_enabled &&
(wtr_while != wtr_timeout)

(Selected == UNSELECTED) ||
(Selected == STANDBY)

(Selected == SELECTED)
&& !port_enabled

(Selected == SELECTED)
&& !port_enabled
Revision 1.0 January 10, 2017 Mick Seaman 3

LACP Wait To Restore
It also begs the question as to what is meant by
‘continuously’, other than advertising that the
specification has not identified all conditions under
which it should run.

“The value of the Selected variable may be changed
by the following:

a) The Receive machine. The Receive machine can set
Selected to UNSELECTED at any time if any of the
following change: The Partner System ID, the Partner

Figure 3—MUX machine state diagram (coupled control, with WTR, redrawn)

Disable_Collecting_Distributing();
Actor.Distributing = FALSE; Actor.Collecting = FALSE; Actor.Sync = FALSE; NTT = TRUE;
Detach_Mux_From_Aggregator(); wtr_while = 0; Ready = FALSE;

BEGIN

DETACHED

(Selected == SELECTED) &&
Ready && !mux_attached

Attach_Mux_To_Aggregator();

ATTACH

Disable_Collecting_Distributing();
Actor.Collecting = FALSE; Actor.Distributing = FALSE; Actor.Sync = TRUE; NTT = TRUE;

ATTACHED

Enable_Collecting_Distributing();
Actor.Collecting = TRUE; Actor.Distributing = TRUE; NTT = TRUE;

COLLECTING_DISTRIBUTING

! Partner.Sync) && port_enabled

Partner.Sync && port_enabled

Disable_Collecting_Distributing();
Actor.Distributing = FALSE; Actor.Collecting = FALSE; Actor.Sync = FALSE;
wtr_while = wtr_timeout;

ATTACHED_WTR

(Selected != SELECTED)

!port_enabled &&
(wtr_while != wtr_timeout)

port_enabled &&
(wtr_while == 0)

mux_attached

!port_enabled

!port_enabled

Figure 4—MUX machine state diagram (independent and coupled control, with WTR)

Disable_Collecting_Distributing();
Actor.Distributing = FALSE; Actor.Collecting = FALSE; Actor.Sync = FALSE; NTT = TRUE; Detach_Mux_From_Aggregator();
wtr_while = 0; Ready = FALSE;

BEGIN

DETACHED

(Selected == SELECTED) &&
Ready && !mux_attached

Attach_Mux_To_Aggregator();
// will set mux_attached TRUE

ATTACH

Disable_Collecting_Distributing();
Actor.Collecting = FALSE; Actor.Distributing = FALSE; Actor.Sync = TRUE; NTT = TRUE;

ATTACHED

Enable_Collecting();
Actor.Collecting = TRUE; Actor.Distributing = FALSE; Actor.Sync = TRUE; NTT = TRUE;

COLLECTING

Disable_Collecting_Distributing();
Actor.Distributing = FALSE; Actor.Collecting = FALSE; Actor.Sync = FALSE;
wtr_while = wtr_timeout;

ATTACHED_WTR

(Selected != SELECTED)

(Selected == SELECTED && mux_attached && port_enabled && (wtr_while == 0) && !Partner.Sync

(Selected == SELECTED && mux_attached &&
!port_enabled && (wtr_while != wtr_timeout)

Enable_Collecting_Distributing();
Actor.Collecting = TRUE; Actor.Distributing = TRUE; Actor.Sync = TRUE; NTT = TRUE;

COLLECTING_DISTRIBUTING

(Selected == SELECTED && mux_attached && port_enabled && (wtr_while == 0) && Partner.Sync &&
(!coupled_control && !Partner.Collecting && !Actor.Collecting)

(Selected == SELECTED && mux_attached && port_enabled && (wtr_while == 0) && Partner.Sync &&
(coupled_control || Partner.Collecting) && !Actor.Distributing
Revision 1.0 January 10, 2017 Mick Seaman 4

LACP Wait To Restore
Key, the Partner_State.Aggregation, the Actor System
ID, the Actor Key, or the Actor_State.Aggregation.

b) The Selection Logic, in the process of selecting an
Aggregator. The Selection Logic will select an
Aggregator when the Mux machine is in the
DETACHED state and the value of the Selected
variable is UNSELECTED.

c) The Selection Logic, in the process of selecting or
deselecting standby links. If the value of the Selected
variable is SELECTED or STANDBY, the Selection
Logic can change the value to STANDBY or
SELECTED.” [6.14.5 pg 61]. This text is a more
comprehensive description of the possible changes to
Selected, though not a complete description of
Selection Logic operation13.

“Where the selection of a new Aggregator by an
Aggregation Port, as a result of changes to the
selection parameters, results in other Aggregation
Ports in the System being required to reselect their
Aggregators in turn, this is achieved by setting
Selected to UNSELECTED for those other
Aggregation Ports that are required to reselect their
Aggregators.”[6.4.14.1 p)]. The NOTE following
explains that the Receive machine does this in certain
cases, but does not cover them all.

6.4.14 p), r), and s) discuss Selection Logic
functionality without mentioning ‘Selection Logic’,
for example: “An Aggregation Port shall not select an
Aggregator …’. This is a mistake, and not just because
an individual Aggregation Port can’t perform the
necessary selection on its own. Leaving out ‘Selection
Logic’ runs the risk of future maintenance missing
these bullets.

2.3 Selected signals to multiple machines

The state machine variable Selected is an output of the
receive state machine (RX), both an input to and an
output from the Selection Logic, and an input to the
MUX state machine [Figure 6-17]—a major design
error (see below).

Selected can be set to UNSELECTED by the Receive
state machine and the Selection Logic can set Selected
to UNSELECTED, but only the latter can set it to
STANDBY or SELECTED [6.4.8 pg 51, defn. of
Selected; 6.4.12 NOTE 1].

“An Aggregation Port is always detached from its
prior Aggregator when the LAG ID changes, even if
the same Aggregator is selected later; to do otherwise
would be to risk misdelivery of frames. Selection of a
new Aggregator cannot take place until the
Aggregation Port is detached from any prior
Aggregator; …” [6.4.14.1 pg 59, NOTE 3]. This
observation is crucial, but NOTEs are by definition
non-normative and there is nothing normative to back
up this statement. The Selection Logic does not, itself,
change the value of Partner.Sync. If it were to run in
the COLLECTING or DISTRIBUTING MUX
machine states and select a different Aggregator it
might remain in that state. If the Actor then sends a
LACPDU (prompted by the Periodic Transmission
machine) it is possible for the Partner to sync up with
the new information before sending its next LACPDU
with information that allows the first Actor to maintain
Partner.Sync while connected to the wrong
Aggregator. Note that the specification does not
require management changes to the LACP Keys to set
UNSELECTED (which it should), but even if it did
the Selection Logic could select a new Aggregator and
set Selected back to SELECTED before the MUX
machine reacts (the state machine conventions require
atomic/indivisible execution of the actions in any state
execute with respect to any other state in any machine,
so there is no weaseling out of this by claiming that
Selected is processed by the Selection Logic and the
MUX machine simultaneously).

The use of Selected to signal to two machines, the
MUX machine and the Selection Logic, one of which
can change Selected14 is the design error referred to
above. A cleaner design might have used separate
variables, but making such a change to the
specification is hardly fair to those who have already
designed implementation workarounds based on the
current spec. A practical solution is to specify
constraints on the operation of the Selection Logic
using the Ready variable (see 2.4 below). If the
Selection Logic sets SELECTED and Ready (TRUE) it
cannot select a different Aggregator to any already
chosen (whether it changes Selected or not), until the
MUX machine has cleared Ready (to FALSE) again.

13 The various text excerpts in this section (1.1) illustrate the editor’s bane—many commenters would like to include text that addresses their concerns in the
document, without regard to the fact that relevant facts are already stated elsewhere in the document and that both their contribution and the existing facts are
an incomplete statement of what needs to be said, and might actually conflict. As the document gets larger further commenters are even more disinclined to
read it all before commenting. Much of this note is concerned with finding out what the standard actually says.
14Or, equivalently, leaving the Selection Logic’s updating of Selected to chance when it needs to be seen by the MUX machine)
Revision 1.0 January 10, 2017 Mick Seaman 5

LACP Wait To Restore
2.4 Ready specification

The signal Ready, part of the condition for the
transition between MUX:WAITING and
MUX:ATTACHED, is not initialized in the current
machines. It should be cleared in the
MUX:DETACHED state. When this is done Ready

nicely separates those times when the MUX machine
can act on the Selection Logic’s choice of Aggregator
(when Ready is TRUE) and those times when the
Selection Logic is free to choose a new Aggregator
(when Ready is FALSE).

“The MUX machine asserts Ready_N TRUE to
indicate to the Selection Logic that the wait_while
timer has expired …” [6.4.8, pg 51 defn. of
Ready_N]—it doesn’t.

“The Selection Logic asserts Ready TRUE when the
values of Ready_N for all Aggregation Ports that are
waiting to attach to a given Aggregator are TRUE.”
[6.4.8, pg 51 defn. of Ready]. This statement is
equivalent to stating that the wait_while timer has run
and expired for all such Aggregation Ports. It
mandates a delay that is often annoying and quite
unnecessary in some circumstances (e.g. if all
Aggregation Ports with a given LACP Key are in the
MUX:WAITING, or the full capacity of the
Aggregator satisfied) there is no point in waiting
further. The first of these points is the subject of the
NOTE to 6.4.15 d), but NOTEs cannot be normative
so it has no effect. A better, comprehensive, solution
would have been to put the wait_while timer within
the Selection Logic, have the DETACHED state
subsume WAITING, and allow the Selection Logic to
run the wait_while timer (if it wishes). There seems
little point to the present combination of allowing
implementation variation in the Selection Logic while
at the same time overconstraining it. A smart
implementation might record the selection when it has
been running for a while, and when powering up next
time use that as a prompt to set Ready if all those links
have been selected, rather than wait on the off chance
that links have been redeployed. ‘Waiting’ can still be
reported, for management purposes

It is probably obvious that “Aggregation Ports that are
waiting to attach” don’t include those that are
STANDBY, but that would be better made explicit if
the Selection Logic is to be constrained in this way.

2.5 RX:PORT_DISABLED

“If the Aggregation Port becomes inoperable and the
BEGIN variable is not asserted, the state machine
enters the PORT_DISABLED state.
Partner_Oper_Port_State.Synchronization is set to
FALSE. This state allows the current Selection state to
remain undisturbed, so that, in the event that the
Aggregation Port is still connected to the same Partner
and Partner Aggregation Port when it becomes
operable again, there will be no disturbance caused to
higher layers by unnecessary re-configuration.”
[6.4.12 pg 12, 2nd para.].

It is unclear what ‘allows’ and ‘no disturbance’ mean.
Partner_Oper_Port_State.Synchronization (Partner.Sync in
the MUX machine [Figure 21]) is set FALSE, so the
MUX machine will disable Collecting and
Distributing. If this is the only link in the aggregate
then we should not be telling the higher layers that it is
still up. If it is not and conversations are not
redistributed, those previously carried by this port will
be lost until LACP times out (thus defeating the
recommendation in 6.1.1 NOTE 1 to use LACP
timeouts only as a method of last resort for link failure
detection, preferring CFM when direct hardware
support is not applicable) unless the Selection Logic
intervenes. And yet the stated purpose of the
RX:PORT_DISABLED state could be read as
preventing the Selection Logic from intervening.

The most generous reading of the quoted text is that
the state, by not setting Selected UNSELECTED,
avoids forcing the MUX machine through its
DETACHED and WAITING states (with a mandated
wait_while delay in the latter) before the port can
become operational again, and that the Selection Logic
will find out what has happened in some unspecified
way (without the benefit of seeing Selected
UNSELECTED) if it wishes to substitute a
STANDBY link in the aggregate. The variables
currently in the MUX machine don’t help, since they
don’t distinguish a link that has entered ATTACHED
from COLLECTING from one that has entered from
WAITING.

2.6 Selection Logic—STANDBY option

“The Selection Logic may determine that the link
should be operated as a standby link if there are
constraints on the simultaneous attachment of
Aggregation Ports that have selected the same
Aggregator.” [6.4.14].

The ‘may’ indicates an option that is included in the
PICS (SLM11). The practical effect of STANDBY (as
opposed to UNSELECTED) is that a STANDBY link
Revision 1.0 January 10, 2017 Mick Seaman 6

LACP Wait To Restore
can be in the MUX:WAITING state with the
wait_while timer already expired, so there might be no
delay in substituting the STANDBY link for a failed
link. However to make this substitution under the
stated constraints would mean that the Selection Logic
would have to detect the failure (see 1.4 above) and
make the failed link UNSELECTED, so its MUX
machine can transition to DETACHED and detach it to
make room for the STANDBY link.

It is not clear from the quoted 6.4.14 text whether the
use of STANDBY is intended to be restricted to the
case of constrained aggregations, or indeed whether
any configuration that calls for the use of STANDBY
is such a constraint. It is also unclear why this is an
option. If there is a constraint (whether as a result of
lack of hardware capability or of explicit
configuration), the implementation difficulty
associated with moving a link from
MUX:DETACHED (where it would remain if
UNSELECTED) to MUX:WAITING is trivial. In
complex cases (two or more links in STANDBY, with
the Selection Logic deciding which to make
SELECTED in the event of a failure of a currently
SELECTED link) ticking the box for the option
provides the user with very little information.

The use of ‘should’, a conformance term indicating a
recommended option, in the quoted text is also
problematic. The whole sentence would be better
using ‘can’, with the equipment supplier providing
supplementary information if the Selection Logic has
been designed to be particularly clever or flexible.

If the failed link is to serve as the new STANDBY
(after subsequent recovery) it might then transition to
WAITING, starting its wait_while timer. There is
nothing in the current specification that says that this
timer should not be running if port_enabled is FALSE.
Of course the Selection Logic has to avoid making the
failed link SELECTED again (following the current
specification, see 1.3 above) that would inhibit the
transition of the previous STANDBY link to
ATTACHED

The 6.4.14 text quoted above is repeated, with a little
elegant variation in 6.4.14.1 k) on pg 59.

2.7 Attaching and Detaching

“On entry to the ATTACHED state, the Mux machine
initiates the process of attaching the Aggregation Port
to the selected Aggregator. Once the attachment
process has completed, … A change in the Selected
variable to UNSELECTED or to STANDBY causes
the state machine to enter the DETACHED state. The
process of detaching the Aggregation Port from the

Aggregator is started. Once the detachment process is
completed, …” [6.4.15 pg 62, describing the operation
of the MUX machine].

This text acknowledges the fact that the
attaching/detaching operations can take some time.
However waiting for an operation to complete half
way through state execution is runs counter to the
spirit of, and quite possibly the letter of, the state
machine conventions. Each state executes
atomically/indivisibly with respect to any other state
for any state machine in the system, so waiting part of
the way through state execution for an operation to
complete means that no other state in any machine can
execute, including those of any machine that is
responsible for executing the operation in progress.

The motivation for having the process of detaching the
Aggregation Port from the Aggregator complete
before execution of DETACHED completes might
have been to ensure that detaching completes before a
transition to WAITING [see Figure 6-21 or Figure
6-22], but that can be guaranteed by requiring that the
Selection Logic not set Selected to SELECTED or
STANDBY before the Mux is detached. Introducing
an additional variable mux_attached to formalise that
linkage between the MUX machine, the
implementation dependent aggregator function, and
the Selection Logic, would provide the necessary
clarity.

I note in passing that the ordering of operations in the
MUX:DETACHED state is odd. If the Partner system
is using the coupled control MUX machine
[Figure 6-22, pg 63] and is in the ATTACHED state,
having Actor.Sync TRUE incents that Partner to move
to COLLECTING_DISTRIBUTING. If detaching the
Mux is going to take some time, Actor.Sync should be
made FALSE first. I suspect that the current
DETACHED state execution ordering was chosen so
that Actor.Sync could serve as a proxy for the
proposed mux_attached variable. It has the further
oddity that Collecting and Distributing are disabled
after the Mux has been detached, by which time there
is nothing to or from which frames could be collected
or distributed.

2.8 Frame loss

It is worth noting that even the independent Mux
machine [Figure 6-21 pg 61] makes little effort to
avoid frame loss when a link is being deliberately
remove from an aggregator (as opposed to failing). It
would not be difficult to arrange for a delay
(terminated by a short timer, or a round trip of the
marker protocol) between signalling Actor.Collecting
Revision 1.0 January 10, 2017 Mick Seaman 7

LACP Wait To Restore
FALSE and Disable_Collecting(), both currently in
MUX:ATTACHED. On the other hand, such a change
would be entirely interoperable with the standard state
machines and protocols, and the latter deal with the
common case of link failure where it is impossible to
avoid loss.

3. Improved Interfaces

3.1 Selection Logic interfaces

The following variables are maintained for each
Aggregation Port (link), and are used to communicate
between the Selection Logic and the other state
machines and system resources (loosely called
‘hardware’ from this point on):

—Selected (UNSELECTED, STANDBY, SELECTED) as in
the current specification.

—Selected_Aggregator, the Aggregator last chosen for
this Aggregation Port by the Selection Logic if
Selected is STANDBY or SELECTED, unspecified if
Selected is UNSELECTED. Updated by the Selection
Logic and not changed by any other machine. Read
by the hardware when the MUX machine calls
Attach_Mux_To_Aggregator().

—Ready. Set TRUE by Selection Logic to indicate to
the MUX machine that the Aggregation Port is to be
attached to the Selected_Aggregator (if Selected is
SELECTED). When Ready is TRUE the Selection
Logic can change Selected to STANDBY or
UNSELECTED, but cannot change it to
SELECTED again or change Selected_Aggregator.
Ready is cleared by the Mux machine to indicate to
the Selection Logic that it can change Selected to
SELECTED and/or change Selected_Aggregator.

—port_enabled, defined as in the current specification.

3.2 Mux hardware interfaces

The following procedures and variable(s) are
used/maintained by each Aggregation Port (link), and
are used to communicate between the Mux state
machines and the hardware:

—Detach_Mux_From_Aggregator() can be called at any
time. If the Aggregation Port is not connected to an
Aggregator, or the process of detaching it has
already begun, it has no effect. Otherwise the
process of detaching the Aggregation Port is
started, mux_attached is cleared (becomes False) and
the procedure returns.

—Attach_Mux_To_Aggregator() starts the process of
attaching the Aggregation Port to the
Selected_Aggregator. Subsequently (when that

process is complete) mux_attached is set TRUE.
This procedure cannot be repeated if there has been
no intervening call to Detach_Mux_From_Aggregator()

(or its effects are undefined if so repeated).
Similarly the results of changing
Selected_Aggregator after it has been called are
undefined. If Attach_Mux_To_Aggregator() is called
after Detach_Mux_From_Aggregator() but before the
process of detaching is complete, the attachment
request will be honoured (with the requested
Selected_Aggregator) as soon as possible.

—mux_attached. See the definition of the procedures
above. Note that a single variable cannot be used to
describe both the definite states resulting after
attaching or detaching are complete if there is an
intervening hiatus while the process of attaching or
detaching is in progress. mux_attached means that
the Aggregation Port has been attached to the
Selected_Aggregator and frames are distributed
from and collected to that Aggregator (if enabled)
and not to any other Aggregator. !mux_attached does
not mean that the Aggregation Port is detached (or
will not become attached shortly).

4. 802.1AX-2014 WTR issues

4.1 WTR feedback loop

As Steve Haddock observed in the interim, part of the
loss problem was due to undesirable feedback. An
LACP Actor (Alice, say) could be making decisions
about the setting of the Sync variable she sends in the
protocol (Actor.Sync or, to avoid taking one side’s
point of view when each thinks of him or herself as
‘the actor’ and the other as ‘the partner’, Alice.Sync)
that depend on the value of Pete.Sync. Then of course
Pete.Sync depends on Alice.Sync, and so on.

Looking at this issue more broadly, 1AX-2014
describes the operation of the wtr_timer in terms of
Actor_Oper_Port_State.Distributing, not only in terms
of its purpose (2014-6.6.2.5 "This timer is used to
prevent frequent distribution changes ..") but also in
terms of how it is controlled (2014-6.6.2.2 "..sets the
WTR_timer when Distributing changes..".

4.2 WTR goals

The purpose of the wtr timer isn’t stated with any great
precision (2014-6.6.2.5 "prevent frequent distribution
changes due to an intermittent defect". What sort of
defect? Apparently any sort of defect that causes
frequent changes. The circularity is clear: as soon as
one participant tries to make distribution changes
(particularly when both directions of a conversation
Revision 1.0 January 10, 2017 Mick Seaman 8

LACP Wait To Restore
are to be mapped to the same link, with the possibility
of Alice discarding traffic that Pete has put on the
‘wrong’ link) we are in trouble. Each participant uses
its own, independent WTR Timer as part of the
process of updating a conversation mask (2014-6.6.2.4
updateConversationMask on page 80).

There is a reason why each participant would like its
own detection mechanisms for flaky links (assuming
that those are what is meant by ‘intermittent defect’ in
2014-6.6.2.5). If the link is ‘composite’ or ‘multi-hop’,
perhaps traversing one or more TPMRs or even a
connection across a service provider network, one end
might see link down (!portEnabled) events that are
invisible to the other. Unfortunately, in this case, the
link might be temporarily disrupted without either of
the LACP participants being aware of that fact. Rather
than add information to LACP which would allow one
participant to signal to another “I think that this link is
flaky even if you don’t, so I am going to do/doing the
following.."15 a better solution is to use CFM (or some
alternative, already designed, link monitoring
protocol) so that the state of the entire link can be
represented by portEnabled.

If 2014-6.6.2.5’s ‘intermittent defect’ is intended to
cover not just link unreliability, but extends to
undesirable behavior exhibited by a LACP partner (or
even some defect in the actor’s own protocol stack),
we are headed down the old illusory path of trying to
figure how out how to run a protocol when the partner
doesn’t follow the protocol.

15Attempting to modify LACP to do this “almost for free” is very enticing. I made several bad attempts to do this, which must have been frustrating to Steve.
Revision 1.0 January 10, 2017 Mick Seaman 9

	LACP Wait To Restore specification
	1. Summary
	2. Current specification issues
	2.1 LACP Selection Logic
	2.2 Selection Logic—Operation
	2.3 Selected signals to multiple machines
	2.4 Ready specification
	2.5 RX:PORT_DISABLED
	2.6 Selection Logic—STANDBY option
	2.7 Attaching and Detaching
	2.8 Frame loss

	3. Improved Interfaces
	3.1 Selection Logic interfaces
	3.2 Mux hardware interfaces

	4. 802.1AX-2014 WTR issues
	4.1 WTR feedback loop
	4.2 WTR goals

