# Leveraging ON/OFF Traffic Model – Literature Example

Backup Material for the Presentation on Support for eCPRI in 802.1CM

János Farkas



#### **Examples from Related Literature**

[1] B. József, Z. Heszberger, M. Martinecz. "A family of performance bounds for QoS measures in packet-based networks." *NETWORKING 2004. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications* (2004): 1108-1119.

[2] Yin, N., & Hluchyj, M. G. "Analysis of the leaky bucket algorithm for on-off data sources", *Journal of High Speed Networks*, 2(1), 81-98, 1993.

[3] Akar, N., & Arikan, E. "Markov modulated periodic arrival process offered to an ATM multiplexer", *Performance evaluation*, *22*(2), 175-190, 1995.

[4] Malomsoky, S., Rácz, S., & Nádas, S., "Connection admission control in UMTS radio access networks", *Computer Communications*, *26*(17), 2011-2023, 2003.

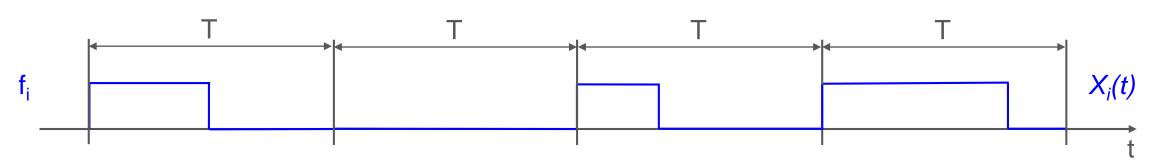
[5] Nádas, S., Rácz, S., Malomsoky, S., & Molnár, S., "Connection admission control in the UTRAN transport network", *Telecommunication Systems*, *28*(1), 9-29, 2005.

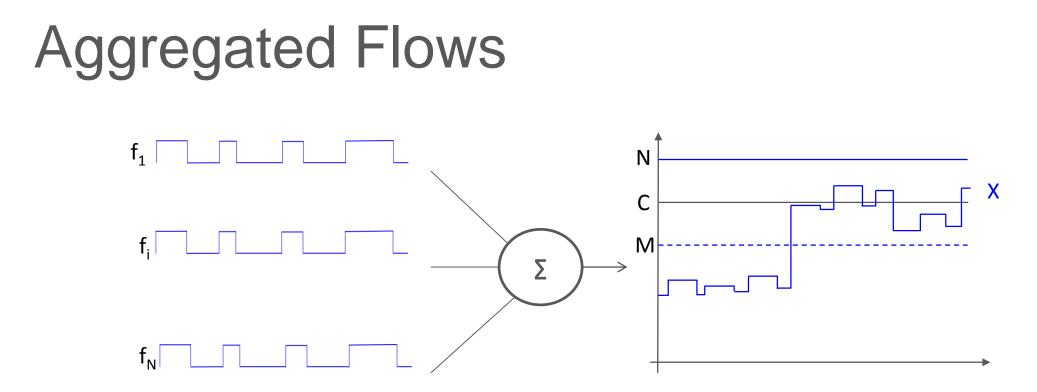
## The Paper Discussed in the Following

[1] B. József, Z. Heszberger, M. Martinecz. "A family of performance bounds for QoS measures in packet-based networks." *NETWORKING 2004. Networking Technologies, Services, and Protocols; Performance of Computer and Communication Networks; Mobile and Wireless Communications* (2004): 1108-1119.

#### Notations

- > N = total number of flows
- >  $f_i$  = a generic stationary, ergodic flow
- >  $X_i(t)$  = traffic generation rate of  $f_i$  at moment t
  - It is a stochastic variable
- > max{  $X_i(t)$  } = peak rate of  $f_i$  must be known
- >  $m_i = E(X_i(t)) = average rate must be known$
- >  $M = \sum_{i=1}^{N} m_i$  must be known (even if  $m_i$  is not known)
- > C = service rate (link capacity)
- > The flows can be observed periodically (T period)





> If the flows are independent, then

$$Pr(X > C) \le \left(\frac{M}{C}\right)^C \left(\frac{N-M}{N-C}\right)^{N-C} \le \varepsilon$$
[1]

> Typical use case:

- Tolerable loss rate  $\epsilon$ , is given
- What C is needed?

## **Numerical Examples**

Max FLR =  $10^{-7}$  for IQ data in P802.1CM D0.7 Max FLR >  $\epsilon$  + Pr {BER}, P(Pr{BER} = 6.6\*10^{-8} [4])

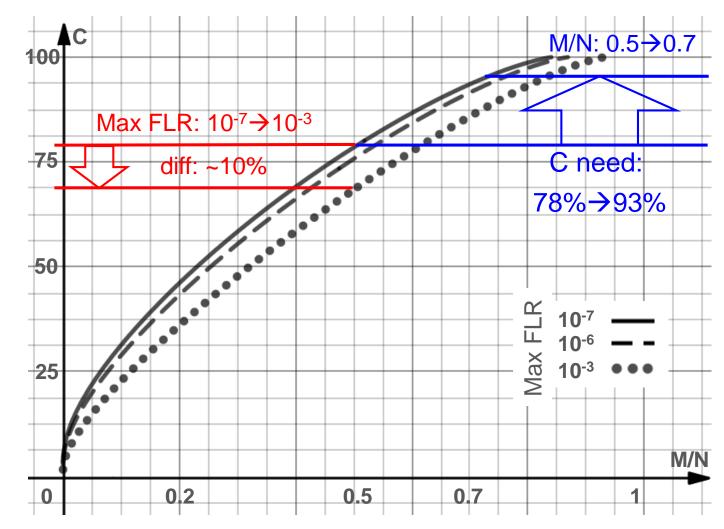
$$Pr(X > C) \leq \left(\frac{M}{C}\right)^C \left(\frac{N-M}{N-C}\right)^{N-C} \leq \varepsilon$$

#### C = f(M/N)

- X axis: normalized average arrival rate
- Y axis: C = capacity need for the aggregate
  - C corresponds to CIR
- Plotted for N = 100 flows
  - N corresponds to CIR + EIR
- Relaxing the loss requirement
  - Max FLR =  $10^{-7}$  vs.  $10^{-6}$  vs.  $10^{-3}$
- Capacity need difference if  $\frac{M}{N} = 0.5$ 
  - Max FLR =  $10^{-7}$  vs. Max FLR =  $10^{-3}$   $\rightarrow$  ~10% difference

#### Worst-case values:

| $\frac{M}{N}$ | P(each flow is sending data) |
|---------------|------------------------------|
| 0.25          | $6.22 \cdot 10^{-61}$        |
| 0.50          | $7.89 \cdot 10^{-21}$        |
| 0.75          | $3.21 \cdot 10^{-13}$        |



Graph generated with: https://www.desmos.com/calculator

#### Acknowledgements

Many thanks to Csaba Simon, Markosz Maliosz, József Bíró, and Miklós Máté for the literature study and calculations.