Paternoster policing and scheduling

Paternoster! policing and scheduling

Mick Seaman

This note describes a simple real-time packet bandwidth reservation, policing, queuing, and
transmission scheduling algorithm that provides bounded network delays without requiring
clock synchronization between adjacent network nodes?.

1. Summary

The paternoster real-time forwarding algorithm
provides bounded delays across the network and
lossless service for streams that conform to their
reservations. It uses three output queues per class of
service per port3, and one counter for each egress port
stream reservation. Best effort traffic can make use of
any remaining bandwidth (either unreserved or not
currently used), with a relaxed upper delay bound
(before discard) if required.

The algorithm can also be described as an
improvement on the peristaltic shaper (CQF), with the
node to node synchronization requirement removed
(see 5. below); or as deadline oriented, with not
before/not after attributes for forwarded packets®.

All the nodes (in any particular network) are
configured to use a basic epoch duration® 7. Flow
reservation i, occupies a A, fraction of the
transmission bandwidth o, of portp, i.e. pis allowed
to send up to 2wt octets/bytes6 for frames
associated with i, in each epoch. That epoch is not
synchronized with the epochs of the ports that are
forwarding frames from other nodes for eventual
forwarding through p, so p can receive (and have to
buffer) up to 2i;,0,t bytes: the worst case assumption
being that the upstream node(s) transmit(s) all of one
epoch’s allocation at the end of that epoch, all of the
next epoch’s allocation at the beginning of that epoch,
and that p receives’ both bursts in a single epoch®.
Equivalently p can receive traffic towards the end of
an epoch that fits within that epoch’s allocation, but

Ipicking a name for the purposes of this note.

whose transmission will naturally extend into the next
epoch. Fortunately these effects are not additive.

At any given time the prior, current, and next epochs
each have an associated transmit queue. Packets are
transmitted from the prior queue, while any remain,
and then from the current queue. Relayed packets
associated with any given reservation are added to the
current queue, until the addition of a packet would
exceed that reservation’s bandwidth allocation for an
epoch, and then to the next queue, again until a further
addition would exceed that epoch’s allocation. Any
additional packets for the reservation are also
discarded, until it is time to begin a new epoch.

When a new epoch begins, the former prior queue
should be empty (if it is not, there has been a
reservation or transmission selection error, and the
queue is purged). The current queue becomes the prior
gueue, the next queue (and any remaining allocation
for each reservation) becomes current, and the (now
empty) prior queue becomes the next queue.

For algorithm pseudo-code see 6. below.

The worst case per forwarding node delay for
reservation conforming traffic is 2 t, and could occur
if there is sufficient network fan-in to realize the worst
case scenario described above. The traffic
immediately following that experiencing the 2 1 delay
will suffer, at worst, a single t delay as the worst case
condition is not immediately repeatable. Detailed
analysis of modest over provisioning, fan-in, and
packet sizes can reduce these bounds, but part of the

2The pasternoster algorithm originated in a network delay analysis. This note is a result of a request from John Messenger at the January 2017 interim for a
protocol description that meets certain specific criteria, though we did not discuss these algorithms. Paternosters are described in
https://en.wikipedia.org/wiki/Paternoster. | am not aware of any networks of paternosters, but the construction of a chain with load transfers at intermediate
nodes should (for engineering reasons) be easier than the use of a single paternoster of the considerable extent required for many potential deployments.

3The use of the term queue here refers to a packet FIFO, though more sophisticated service algorithms are possible (see later). A more complex control
structure requires only two FIFO queues, but the three queue version is easier to describe.

4Although these two scheduling approaches are probably thought of as being very different, there is a (contorted) mapping between the two. I have not had the
time to participate in the P802.1Qcr discussion: everyone who has may already be familiar with these ideas—feedback appreciated.

5The wikipedia entry for the use of the following symbol, tau, in biology, seems appropriate. https://en.wikipedia.org/wiki/Tau

6Including the overhead associated with each frame, so a reservation has to be made with some awareness of packet size and per frame overhead (including an

allowance for headers added en route).
Assuming an output buffered model in this description.

8If there is a single egress port, of equal bandwidth, for all flows at p’s node the total buffering requirement is clearly reduced,. A sophisticated analysis would
take into account the fan in, the total reserved bandwidth faction, and any other algorithm interleaving frames on output. It is probably not worth doing that

analysis. One approach is to allocate X,»p

Revision 1.1 February 21, 2017

©,T bytes per queue, so the total is three times (rather than twice) that—which may simplify error handling.

Mick Seaman 1


https://en.wikipedia.org/wiki/Paternoster
https://en.wikipedia.org/wiki/Tau

Paternoster policing and scheduling

attractiveness of a good simple scheme is not having
to do that analysis.

The class of service transmit queues do not have to be
serviced as pure FIFOs, provided that the transmission
selection used provides the reserved bandwidth to any
packets eligible for transmission in an epoch. If one or
more packet can be transmitted, then one of them
should be. If other algorithms share the bandwidth this
condition may be met by providing the usable
bandwidth at the end of the epoch.

The duration of an epoch, t, does not have to be the
same for each class of service (though must be
consistent network wide). If different durations are
used they have to be arranged and used in a way that
ensures each does provide the requisite bandwidth for
each class of service in each epoch. One possibility is
to use strict priority transmission selection, with lower
priority classes using a period of twice the duration of
the higher priority classes and an epoch start that is
aligned with that of alternate high priority epochs. In
this arrangement the amount of bandwidth that the
higher priority classes can take from that available to
those of lower priorities is consistent for each of the
latter’s epochs (which would not be the case if the
epoch starts were not aligned).

2. Multi-epoch extensions

The algorithm could use additional epochs, e.g. next,
next_but one, and mext but two, to distribute
forwarded frames for each reservation more evenly
over time. The difficulty is in the granularity of
reservations, which must be large enough to
accommodate the near simultaneous forwarding, from
all potential fan-in ports, of frames for that
reservation.

3. Best effort traffic

Best effort traffic can be simply transmitted at a
strictly lower priority, filling in the transmit
opportunities left by reserved traffic in any given
epoch. If this is done, the bandwidth remaining after
fixed reservations should allow for at least one
maximum sized best effort frame per epoch, so if the
transmission of such a frame extends from the end of
one epoch into the start of another the reserved
bandwidth commitment can still be met for the latter.

The amount of best effort traffic already queued can
also be compared with the spare bandwidth available
for forthcoming epochs and further best effort packets
dropped if their anticipated transmission time is too far
into the future—effectively sizing the best effort queue
to provide delay bounds.

Revision 1.1 February 21, 2017

4. Pre-emption and paternoster

Pre-emption can be used, though each reservation has
to be increased (by the difference between the smallest
eligible and the maximum tolerated pre-empting frame
sizes): to avoid bumping a further frame, received
while pre-emption is in progress, from current to next.

5. Comparison with peristaltic shaping

The peristaltic shaper (802.1Qch, Cyclic Queue and
Forwarding) synchronizes the epochs used by bridges
throughout the network and (in paternoster algorithm
terms) queues each relayed frame for the next epoch
and transmits only from the current epoch. The
peristaltic shaper’s worst case forwarding delay
through a single bridge is the same (when measured in
epoch durations) as that of the paternoster algorithm, 2
t. However the peristaltic shaper’s synchronization
means that the delay across a network of # hops is
between (h - 1) t +dand (h + 1) t + 6, where d is the
forwarding delay through a single relay, ignoring the
eventual transmitting port’s queuing strategy. The
paternoster algorithm’s network delay will be between
h 6 and 2 h t (ignoring ‘time on the wire” in both
cases), though the average delay is likely to be
strongly weighted to the lower of these—if none of the
inputs to the network vary each relayed frame will be
gueued and transmitted within the current epoch.

As compared with the peristaltic shaper then, the
paternoster algorithm gives up some delay
predictability in exchange for not requiring clock
synchronization and for reducing the average delay. It
should also be pointed out that the constraints on
epoch duration t are not the same for both algorithms.
If the peristaltic shaper receives more than an epoch’s
permitted reservation within an epoch, the excess has
to be discarded, whereas the paternoster algorithm can
distribute the wunevenly spaced input over two
successive epochs, and can thus provide the same
service with half the epoch duration—making the
upper delay bounds the same for both algorithms.
Against this has to be set the possible difficulty of
making small reservations when using short epochs.

Mick Seaman 2



Paternoster policing and scheduling

6. Pseudo-code

The following ‘C’ code fragments illustrate the
algorithm and highlight various points about its
externally observable behavior—they are not
intended to constrain real implementations in
any other respect.

See Figure 1. Successive epochs and their
current transmit queues are identified by the
cyclically repeating series zero, One, Two, ... .
The present epoch for each port and class of
service can differ (see 1. above): epoch array
elements identify their present prior, current,
and next epoch39 and currently selected tx
(transmit) queue (prior or current)*C.

The reservations information for each port, class
of service and packet stream or flow!!
comprises the number of transmitted octets
(including the overhead attributable to each
packet) permitted for that flow in an epoch, the
epoch (queue_for, either current or next) for
which that reservation’s packets are being
gueued at present, and the remaining octet
allocation for the reservation in that epoch.

See Figure 2. When a packet (for an egress port
and class of service) is relayed, its transmit
packet_allocation is subtracted from that remaining
for its reservation’s present queue_for epoch. If
the packet will fit it is enqueued, and if the
remainder is not zero (indicating the possibility
of queuing further packets for that epoch) the
number remaining is updated and the procedure
returns True (indicating success). If the packet
was an exact fit, and the reservation had not yet
begun queuing for the next epoch, queue_for is
advanced to that epoch and the number
remaining reinitialized to the permitted quota
before the procedure returns. If the packet didn’t
fit and the reservation has not yet advanced to
the next epoch, the remainder is recalculated for
that epoch with its updated allocation. This
second attempt might succeed or fail (the total
permitted allocation might be less than required
for the packet’s size). If the packet is not
enqueued the procedure will return False, with
queue_for identifying the next epoch and
remaining the excess of the (possibly multiple)
queuing attempts in excess of the permitted
allocation.

typedefint Int; // Types and constants case stropped by convention.
typedef Int  Port_no;

typedef Int  Class; /I Class of service

typedef Int  Epoch; Il {Zero, One, Two, ..} repeating

typedef Int  Allocation;

#define Queues 3 // transmit queues for each port and class
#define Reservations // number (arbitrary) of reservations per port and class

typedef struct

{
Epoch prior;
Epoch current;
Epoch next;
Epoch tx;

} Port_class_epoch;

typedef struct

{
Epoch queue_for;
Allocation  remaining;
Allocation  permitted;

} Reservation;

Port_class_epoch
Queue
Reservation

epoch[Ports][Classes];
queue[Ports][Classes][3];
reservations[Ports][Classes][Reservations];

Figure 1—Data types and structures

Boolean relay(port_no, class, reservation, packet, packet_allocation)

Port_no port_no;
Class class;
Reservation *reservation;
Packet packet;
Allocation  packet_allocation;
{
Allocation  remainder;
for(;;)
{

remainder = reservation->remaining - packet_allocation;

if ((remainder >= 0)

{

enqueue_packet(port_no, class, reservation->queue_for);

if ((remainder > 0) ||
(reservation->queue_for == epoch[port_no][class].next))
{
reservation->remaining = remainder; return (remainder >= 0);
}
reservation->queue_for = epoch[port_no][class].next;
reservation->remaining = permitted;
if (remainder == 0)
{

return (remainder >= 0);
}rd

Figure 2—Queuing a relayed packet for transmission

9The current value of all three epoch identifiers can be derived from any one: this structure avoids the need for mod 3 arithmetic in the following code.
10The queue structures themselves are independent of this description and are not included in Figure 1.
1The procedures and criteria for associating any given packet with a particular reservation are independent of the present algorithm.

Revision 1.0 February 21, 2017

Mick Seaman



Paternoster policing and scheduling

Note that if the relayed packet cannot be queued for the current epoch, no part of that epoch’s allocation is carried
forward to the next epoch. Nor is any subsequent smaller packet queued for the any epoch once that epoch’s

permitted allocation has been exceeded.

See Figure 3. When an transmit opportunity for
a port and service class arises, this procedure
attempts to dequeue a packet from the epoch.tx
queue. Initially, i.e. following the start of a fresh
epoch, this may be the queue associated with
prior epoch, as packets can be added to that
queue (reservations permitting) right up to the
end of the prior epoch (when it would have
been current). If the dequeue operation returns a
packet, or the epoch.tx queue is already that for
the current epoch, the procedure returns the
packet (or a null pointer if no packet was
available). Otherwise epoch.tx is updated to refer
to the current epoch queue and the dequeing

Packet tx_select(port_no, class)

Port_no port_no;
Class class;
{

Packet  packet;

for(;;)
{

packet = dequeue(port_no, class, epoch[port_no][class].tx);
if ((packet != Ptr_to_null) ||
(epoch[port_no][class].tx == epoch[port_no][class].current))

return(packet);

epoch[port_no][class].tx = epoch[port][class].current;

}r}
Figure 3—Transmit selection

operation reattempted. Note that once the current epoch has started packets will no longer be added to the prior
queue, so once the latter has been drained the transmit focus selection can shift to the current epoch’s queue.
Packets can be added to and removed from this queue throughout the current epoch, though packets for some
reservations (in excess of their per epoch permitted limit) can be placed on the next epoch’s queue, thus delaying

their transmission (see Figure 2).

See Figure 4, which completes the model with
the operations necessary when an epoch gives
way to its successor. By this time the prior
transmit queue should be empty (if the permitted
total for all reservations has not erroneously
exceeded the transmit capacity) — the queue is
purged (emptied) to guard against persistent
errors. The prior, current, and next epoch
identifiers are updated (if they were Zero, One,
and Two, they become One, Two, and Zero
respectively). Then each reservation that is not
already queuing to the (new) current epoch is
updated to queue_for that epoch with its
remaining allocation initialized to the permitted
allocation for an epoch.

Revision 1.0 February 21, 2017

epoch_tick(port_no, class)
Port_no port_no;
Class class;

{

Epoch temp = epoch[port_no][class].prior;
purge_queue(port_no, class, epoch[port_no][class].prior_epoch);

epoch[port_no][class].prior = epoch[port_no][class].current;
epoch[port_no][class].current_epoch = epoch[port_no][class].next;
epoch[port_no][class].next = temp;

for(i = 0; i < Reservations; i++)
{
if (reservations[port_no][class][i].queue_for =
epoch[port_no][class].current)
{
reservations[port_no][class][i].queue_for =
epoch[port_no][class].current;
reservations[port_no][class][i].remaining =
reservations[port_no][class][i].permitted;

P
Figure 4—Transmit selection

Mick Seaman 4



	Paternoster policing and scheduling
	1. Summary
	2. Multi-epoch extensions
	3. Best effort traffic
	4. Pre-emption and paternoster
	5. Comparison with peristaltic shaping
	6. Pseudo-code

