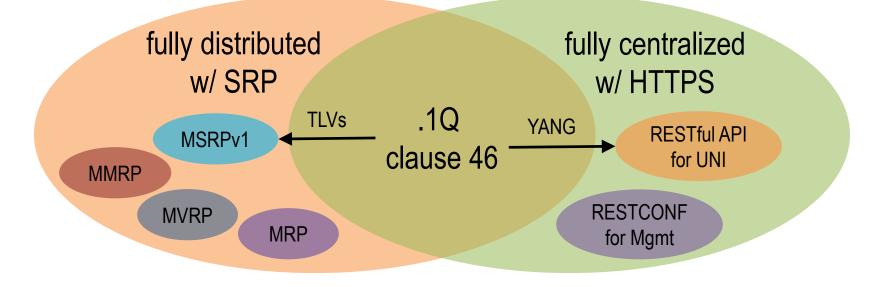

TSN Configuration Roadmap (proposed "what's next?")

Rodney Cummings National Instruments

IEEE 802.1, July 2017, Berlin


Introduction

- P802.1Qcc moves TSN config forward in major ways
- We have identified gaps during the .1Qcc project
 - Successful standards evolve, so that is expected
- Since .1Qcc is nearing completion, gaps will be addressed in future project(s)
- These slides propose goals for future project(s)
 - <u>Not</u> intended as an 802.1 PAR proposal
 - Presenter believes that 802.1 PAR should be preceded by draft-ready proposals

- Solution (A, B, etc): Interoperable set of specifications
 - 1. Select from existing on-the-wire protocols (control-planes)
 - 2. Create a solution-specific data model by enhancing info model
 - 3. Map data model onto selected protocols

Two Example Solutions Using .1Qcc

• Technically speaking,

clause 46 is two data models with an implied information model

Overall Assumptions (.1Qcc & Future)

- Multiple solutions can co-exist in same network
 - Solution represents protocol choice, but protocols co-exist
- All industries, applications, and layers should work toward a common TSN / DetNet architecture
 - Will improve market momentum and usability
- Common 'API' for end stations
 - Easier for non-TSN applications to transition to use TSN, and not worry about 802.1 / IETF details
 - Clause 46 of .1Qcc was designed toward this goal

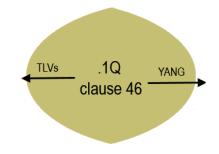
IETF DetNet Assumptions (1 of 2)

- Let's assume TSN and DetNet share 'hardware stuff'
 - Queuing (shaping/scheduling), policing, data redundancy
- That leaves three major differences
 - 1. Data plane: Routing of packets inside network (e.g. MPLS)
 - DetNet WG is working on RFC to select among IETF options
 - Once selected, .1CB (or analogous RFC) can integrate
 - No problem
 - 2. Protocols: IETF has its deployed control planes (e.g. RSVP)
 - As discussed, multiple protocol solutions can co-exist
 - E.g. Slide 7 of <u>http://ieee802.org/1/files/public/docs2017/new-kiessling-RAP-poposal-and-features-0517-v01.pdf</u>
 - No problem

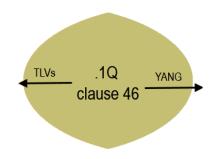
IETF DetNet Assumptions (2 of 2)

- That leaves three major differences (continued)
 - 3. Terminology: Different terms for same concept
 - E.g. Node not station, packet not frame, source not talker, flow not stream, deterministic not time-sensitive, ...
 - Differences are essential within each standard group
 - Standards participants insist on their terms... no problem
 - To users of TSN/DetNet (APIs, on-the-wire data, source code), these differences are confusing and unjustifiable... problem
 - E.g. What if we create an API in Linux / Windows / Mac?

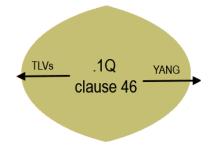
Are there two APIs, exactly the same except for terms? Hopefully the answer is No


Subsequent <u>slide</u> proposes steps to resolve problem

IEEE 802.1, July 2017, Berlin

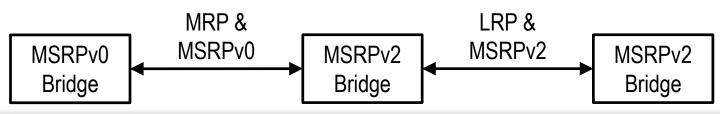

Clause 46 (1 of 3)

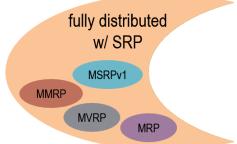
- Gap: Consensus that we want a single common information model
 - One 'API' for UNI
 - Common to TSN and DetNet
 - <u>draft-farkas-detnet-flow-information-model</u> works in this direction
 - Common as subset of data model for .1Q MRP & .1CS LRP
 - "<u>RAP</u>" is really MSRPv2 on LRP
 - Applied to multiple control-plane solutions
 - Info model does not contain control-plane specifics


Clause 46 (2 of 3)

- Gap: Explicit information model
 - Requested in comments to .1Qcc
 - Re-organize clause 46 as info model
 - Specify as groups of elements, each with type and description
 - Text specifications, not TLV or YANG
 - draft-farkas-detnet-flow-information-model is a start
 - Adding DetNet elements as needed
 - Use common TSN/DetNet terms
 - Move TLV specs to clause 35 (SRP)
 - Move YANG to new clause for fully-centralized (more <u>later</u>)
 - Presenter can provide draft-ready proposal

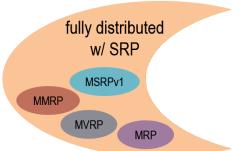
Clause 46 (3 of 3)


- Gap: Common terminology
 - <u>draft-ietf-detnet-architecture</u> has terms
 - Intended for use by IETF only (not 802.1)

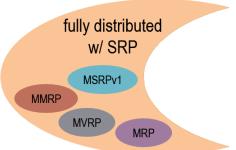


- Proposed approach:
 - 1. Raise visibility of shared TSN/DetNet problem in both WGs
 - 2. Agree on terminology assumptions for info model (at least)
 - Term doesn't need WG prefix (e.g. "node", not "DetNet-node")
 - Each WG has its own terms, but info model uses superset term
 - » E.g. "Relay node can be a bridge, router, firewall, or other..."
 - 3. Use <u>draft-ietf-detnet-architecture</u> for consensus (DetNet mailing list)
 - Present in 802.1 to solicit comments here
 - 4. Work out compatible transition for 802.1 TSN
 - E.g. MSRPv0/v1 keeps old terms, but maybe MSRPv2 uses new

Fully-Distributed w/ SRP (1 of 4)

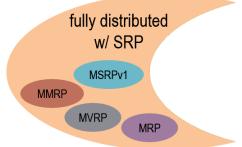

- Gap: Map .1Q applications to LRP (.1CS)
 - Legacy app supports either LRP or MRP
 - MMRP, MVRP, MIRP, MSRP
 - Assumes consistent interface for MRP/LRP
 - MSRPv2 (new features): "Shall use LRP" is okay
- Gap: MSRPv2 is backward compatible
 - Typical 802: Mix of versions no worse than lowest version
 - Bridge with LRP shall also support MRP
 - MSRPv2 translates like .1Qcc did for v0/v1

Fully-Distributed w/ SRP (2 of 4)

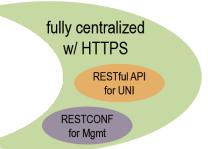

• (Next four gaps from this and this presentation)

- Gap: MSRPv2: Domain enhancements
 - Negotiate SR class parameters configured by management
 - Question: Why some parameters & not others?

Fully-Distributed w/ SRP (3 of 4)

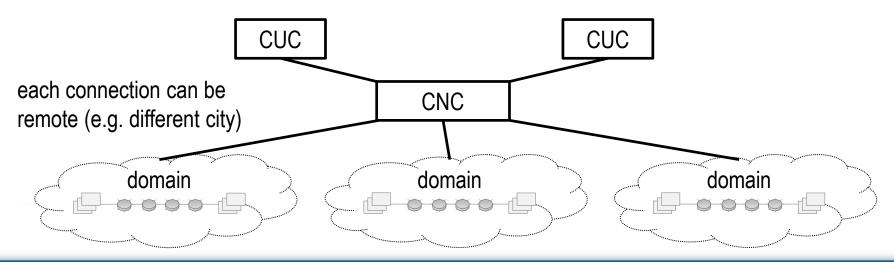

 Gap: MSRPv2: New methodology for latency

- Management calculates latency-bound for each SR class
 - Using knowledge of topology, each Bridge's shaping, etc
 - Management writes latency-bound to managed objects in Bridge
- Latency-bound is reported in Domain attribute of SR class
- New: Talker/Listener requests MaxLatency using UNI, and MSRPv2 uses Domain to find best SR class for that Stream
 - Design paradigm: Domain is *not* information model, Domain is a detail of the control-plane
 - Info model maps to each control-plane's data model details


Fully-Distributed w/ SRP (4 of 4)

- Gap: MSRPv2: Recent TSN standards
 - E.g. 802.1CB, 802.1Qci, 802.1Qch
 - Question: What is done by management, what is done by SRP?
- Gap: MSRPv2: Other goals
 - "improved distribution", "enhanced diagnostic", "improved reconfiguration on topology change"
- For preceding fully-distributed gaps, volunteer(s) needed for draft-ready proposal

Fully-Centralized w/ HTTPS (1 of 7)


- Gap: Complete YANG module for CNC
 - For the question "Which is best for UNI, RESTful API, or RESTCONF?" answer of "RESTCONF" has become clear

- YANG provides formal schema; easier to validate than written specs
- YANG supports actions (RPC functions)
- Add as a new clause in 802.1Q
 - Completes the picture for interoperability
 - Core YANG text uses .1Qcc's YANG snippets
 - Enhance the YANG module for fully-centralized solution
 - (Gaps on next slides)

Fully-Centralized w/ HTTPS (2 of 7)

- Gap: CNC YANG: Hierarchy in CNC
 - A CNC supports multiple CUC clients
 - Each CUC can have multiple domains
 - Domain = TSN-capable network with CUC's end stations
 - YANG module in CNC uses this hierarchy
 - <u>RFC6536</u>: Each CUC can control access to Streams in its domain(s)

fully centralized

w/ HTTPS

RESTCONF

for Mgmt

RESTful API

Fully-Centralized w/ HTTPS (3 of 7)

- Gap: CNC YANG: Actions
 - Some CNC tasks can be time consuming
 - Discover physical topology and capabilities
 - LLDP crawl
 - Capabilities = shapers, scheduling, delays, limits, etc
 - » 'Up' from Bridge's management, not 'down' from CUC's Domain
 - Compute reservations
 - Scheduled traffic
 - 'Network calculus': Latency analysis using strict & preemption
 - Configure reservations in Bridges (after compute)
 - Domain in YANG module provides an 'action' to start task
 - Data nodes in domain provide progress of task

fully centralized

w/ HTTPS

RESTCONE

for Mgmt

RESTful API

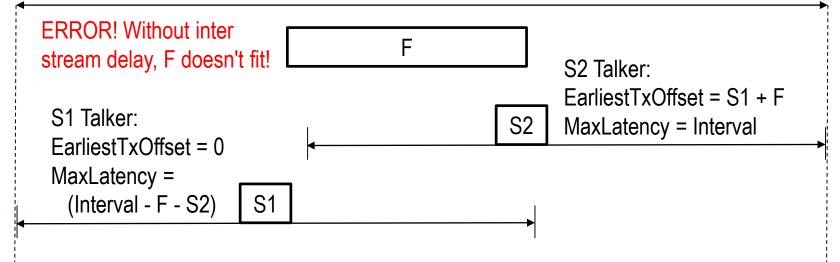
Fully-Centralized w/ HTTPS (4 of 7)

- Gap: CNC YANG: Topology and capabilities
 - Use case: Topology display in CUC
 - Many CUCs do this today, so YANG module provides a way to read domain's physical topology
 - Use case: Offline design
 - Customer designs offline topology in CUC's UI (not physical)
 - User application, Talkers, Listeners, Bridges with capabilities
 - CUC writes offline topology to CNC for 'compute', then reads status
 - When physical network is ready, offline compute re-used for online
 - Augment <u>I2RS topology YANG</u> with LLDP local info, and each Bridge's capabilities
 - CNC module uses TSN topology to enhance for use cases

fully centralized

w/ HTTPS

RESTCONF


for Mgmt

RESTful API

Fully-Centralized w/ HTTPS (5 of 7)

- Gap: CNC YANG: Inter stream delay
 - Time-aware function F & Streams S1 and S2 : S1 → F → S2; F has known WCET; CUC can locate F anywhere in Interval
 - Inter stream delay: Min time from end-of-S1 to start-of-S2

Interval

fully centralized

w/ HTTPS

RESTCONF for Mgmt

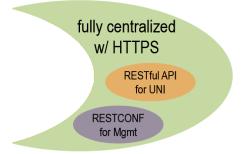
RESTful API

Fully-Centralized w/ HTTPS (6 of 7)

- Gap: CNC YANG: Time sync
 - Time sync is a critical component of TSN
 - Info model integration can be profile-independent
 - TSN/DetNet supports any 1588 profile
 - Use case: Use of 1588-2018 externalPortConfiguration
 - Configure GM and active topology from controller (CNC)
 - Enhance UNI's InterfaceCapabilities / InterfaceConfiguration concept
 - End-station→CNC: Capabilities like GM timePropertiesDS
 - CNC→End-station: Configuration like portState (GM or slave)

fully centralized

w/ HTTPS


RESTCONF

for Mgmt

RESTful API

Fully-Centralized w/ HTTPS (7 of 7)

 Presenter can provide draft-ready proposals for preceding fully-centralized gaps

- Gap: CNC YANG: Confederation of multiple CNCs
 - Described in last slide of recent presentation
 - Volunteer needed for draft-ready proposal

Thank You

IEEE 802.1, July 2017, Berlin