DetNet Control Plane Possible Future

November 11, 2018 Bangkok, Thailand

DetNet and Control Plane

- Direct work on Control Plane functions is currently out of scope
 - o This can be revisited once work deliverables are complete
- Indirect / supporting work, including implications and requirements, is in scope
 - Flow information model
 - Data plane solutions documents
 - o YANG models
- Future work will leverage existing RFCs and drafts in development of other Working Groups
 - Some work likely to move to protocol owning WG, with DetNet WG defining requirements
 - Objective of this talk is identify those other WGs and their technologies
 - For more information see tutorial from IETF 103: <u>An IETF Traffic Engineering Overview</u> https://datatracker.ietf.org/meeting/103/materials/slides-103-edu-sessk-an-ietf-traffic-engineering-overview

Related IETF Technologies

- MPLS-TE: MPLS with traffic engineering
 - o Includes: Data Plane, Routing (OSPF-TE, ISIS-TE), Signaling (RSVP-TE)
 - MPLS-SR (segment routing) with Traffic Engineering possible future
- GMPLS: Distributed Multi-layer transport network control
- PWs: Service adaptation via Pseudo Wires and EVPN control
- PCE: Centralized path computation and control
- ACTN/SDN-TE: An approach to delivering TE orchestration and control
- TE YANG Models: for monitoring and north/south control
 - o Can be used with centralized, decentralized or hybrid control approaches

MPLS-TE Service

Traffic Engineered Tunnels Between Endpoints

Bandwidth

Bandwidth

GMPLS: A Label Hierarchy

- Observe that MPLS-TE is a circuit switching technology based on labels
 - We can generalize the concept to any switching technology
 - Labels move from additions to the packet (headers) to physical identifiers Generalized MPLS (GMPLS)
 - MPLS control plane extended for circuits, lambdas, fiber and ports
 - OSPF-TE (and ISIS-TE), RSVP-TE
 - New protocol
 - Link Management Protocol (LMP) to coordinate physical links

20

MPLS-TE and GMPLS Control Protocols

MPLS Control Plane

Prefix LSP Signaling LDP (and BGP)

Tunnel LSP Signaling RSVP-TE, CR-LDP

TE-Routing OSPF-TE, IS-IS-TE

GMPLS extensions

GMPLS-Routing OSPF-TE, IS-IS-TE GMPLS-Signaling RSVP-TE, CR-LDP

Link Management LMP, LMP-WDM, LMP-SONET

• Some implementations use centralized control – more on this later

PseudoWires

- Transports layer 1, 2 or 3 data over packet networks
 - o For example TDM, Ethernet or ATM over MPLS
- PW Control Word used to
 - Differentiate traffic types (IP vs PW)
 - Enable PW client related processing
 - Supports PW OAM
- BGP-Based EVPN is current preferred L2VPN control protocol

Path Computation Element (PCE)

- PCE: Path Computation Element. An entity (component, application, or network node) that is capable of computing a network path or route based on a network graph and applying computational constraints – RFC 4655
 - This does not say it is a dedicated server
 - It can be embedded in a router
 - It can be embedded in every router
- For virtual PoP use case
 - PCE function in head-end LSR for local domain
 - PCE function in remote ASBR accessed through remote call

Source: An IETF Traffic Engineering Overview

21

Realisations of the PCE Architecture

- Historically, head-end LSRs did path computation
 - They included a PCE component
- Historically, the NMS determined paths and instructed the network
 - It included a PCE component
- The PCE architecture recognises these and allows PCE to be externally visible perhaps on a dedicated server

RFC 5440

PCE co-located in the LSR

PCE in a dedicated server

Source: An IETF Traffic Engineering Overview

22

ACTN/SDN-TE

- TEAS WG ACTN provides a framework for SDN control of traffic engineered networks
- Useful reference architecture
 - Controller-based solutions need not adhere to ACTN
- North-south interfaces are generally applicable
 - To non-ACTN controllers and even distributed control planes
 - o Defined using YANG

PCE as a Controller

- Non-ACTN SDN-TE Controller Example
 PCE as a Central Controller (PCE-CC)
 - Integrating PCE into an SDN architecture
 - All southbound exchanges use PCEP
 - Control may be single node
 - Applications proposed in MPLS, non-packet, and IP environments

Source: An IETF Traffic Engineering Overview

30

TE-YANG

- Multiple YANG models supporting TE exist
 - o Defined in multiple WGs
 - Different stages of process
- Reminder: ACTN is a reference model for SDN-TE, not a required implementation

YANG Models for ACTN and TE

Segment Routing (SR)

- A tunneling technology
 - Encapsulates a packet within a header
 - Forwards packet based upon encapsulating header
 - Compare and contrast with IP source routing
- A Traffic Engineering (TE) technology
 - Allows a router to steer traffic along an SR path
 - Path can be different from the least cost path
- Maybe more?
 - Innovative new applications to be discovered
- Control plane
 - Signaling removed from the network
 - Routing protocols augmented a little
- Forwarding planes
 - MPLS
 - IPv6
 - NOT IPv4

SR-TE work is on-going

- Currently path steering is defined via policy (Path Engineering only)
- o Some individual proposals include resource control

Source: An IETF Traffic Engineering Overvie

29

DetNet - TSN Workshop

7855

RFC

Related IETF Working Groups

• TEAS: Traffic Engineering Architectures and GMPLS/RSVP-TE

MPLS: MPLS data plane, LDP, MPLS specific control

PCE: PCE protocol, servers

• LSR: Link state routing protocols (ISIS, OSPF)

CCAMP: Non-Packet technology-specific control

BESS: EVPN

• PALS: PWs

SPRING: Segment Routing

NetMod: YANG Language, core modules

NetConf: YANG encoding and transport, some core modules