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Purpose

o Share a paper from our team with the group

o <<Analysis of TSN for Industrial Automation based on Network Calculus>>
o Network calculus theory, industrial automation network modeling, and simulation results.

o

o Discuss the idea of using network calculus to calculate the worst-case latency bound for
industrial automation scenarios.

o Vital for using asynchronous/non-time-based methods, e.g., SP with CBS or ATS.

o  What is the challenge? Where is the gap?


https://ieeexplore.ieee.org/document/8869053

Network calculus theory

o Traffic characteristics / traffic constraints (TSpec in TSN)

- arrival curve
- The bound.

o Device’s capability (bandwidth, queuing and shaping, reservation) - service curve
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Fig. 3. Two-port network model of a TSN relay node

R(s+t)— R(s)<al(t), Ys=0,t=0 (1)

R*(t) = Rap(t) =inf{R(s)+5(t—s)}, VO0<s<t (2)
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Fig. 4. Computation of backlog bound and delay bound.



Network calculus theory

CDT: Control Data Traffic
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The network calculus math in this paper mainly refers to J-Y. Le Boudec and E. Mohammadpour’s research. 4



Industrial automation network modeling

FLOW DESCRIPTION
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Fig. 5. Simulation topology

Most of the information used for modeling is referenced to past 60802 contributions and 60802 use case draft.



Industrial automation network modeling

o Topology, flows, and shapers.
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Fig. 5. Simulation topology
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FLOW DESCRIPTION

Flow path

Traffic Type

Forwarding Priority
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Most of the information used for modeling is referenced to past 60802 contributions and 60802 use case draft.

Lmax=0.8kb
T=2ms (cycle time)

Lmax=0.8kb
T=1ms (cycle time)

Lmax=0.8kb
T=10ms
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Simulation results

o The worst-case latency bound result with different bandwidth usage (i.e., different number of flows).

» Assuming that the latency requirement is 50%*T
(cycle time) for all isochronous traffic, and is T for all
cyclic traffic, then the result satisfies the requirement.

» Generally, the latency requirement could be tighter for
isochronous cyclic real-time traffic and looser for cyclic
real-time traffic.
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A Flow No. represents a flow path.
Multiple flows can use a same path.
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Simulation results

o The worst-case latency bound result with different bandwidth usage (i.e., different number of flows).

T=10ms

10

: : : I 16 Flows
Assuming that the latency requirement is 50%*T -;;ﬁ v

(cycle time) for all isochronous traffic, and is T for all
cyclic traffic, then the result satisfies the requirement.

T=2ms
Generally, the latency requirement could be tighter for J=1ms
isochronous cyclic real-time traffic and looser for cyclic
real-time traffic.

Worst-case Delay Bound (ms)

If the latency requirement is 20%*T for isochronous

traffic,,, oops!
What if there are even more flows, or more hops, or... o1
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Simulation results

Introducing offset to periodic traffic can get a better/tighter worst-case latency bound.
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Of course, there are many other ways to get a better/tighter worst-case latency bound.

Better: to make the actual worst-case latency less.
Tighter: to make the calculated worst-case latency bound closer to the actual worst-case latency (reduce pessimism). 9



Discussion

o Asinreal industrial automation scenarios, the number of flows and nodes can be much larger
than the model used in this paper, will network calculus still be able to provide a useful result of
latency bound?

o How to improve the NC math to get a tighter bound while the calculating complexity is acceptable?
o How is the performance of ATS, or CBS/ATS combines with TAS?

o How to optimize the parameter configuration of shapers?

o Are there any better ways to describe a flow besides “b+rt”?

bound for industrial automation scenarios?
o How to make the industrial automation network modeling closer to the real case?

_________________________________ R EEEEEEEEE R
Hope to get feedback from the group.

\
|
o Any other thoughts and concerns about using network calculus to calculate the worst-case latency ,
:
|
)
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Thank you



