# Analysis of TSN for Industrial Automation based on Network Calculus

Jiayi Chang, Lihao Chen, Tongtong Wang, Xinyuan Wang Huawei Technologies





#### **Purpose**

- Share a paper from our team with the group
  - <<Analysis of TSN for Industrial Automation based on Network Calculus>>
  - Network calculus theory, industrial automation network modeling, and simulation results.
  - https://ieeexplore.ieee.org/document/8869053
- Discuss the idea of using network calculus to calculate the worst-case latency bound for industrial automation scenarios.
  - Vital for using asynchronous/non-time-based methods, e.g., SP with CBS or ATS.
  - What is the challenge? Where is the gap?

#### **Network calculus theory**

- Traffic characteristics / traffic constraints (TSpec in TSN)
- Device's capability (bandwidth, queuing and shaping, reservation)

 $\sim \operatorname{arrival} \operatorname{curve} \alpha(t) \xrightarrow{\operatorname{Network}} R^*(t)$   $\sim \operatorname{service} \operatorname{curve} \beta(t)$ 

Fig. 3. Two-port network model of a TSN relay node

$$R(s+t) - R(s) \le \alpha(t), \quad \forall \ s \ge 0, \ t \ge 0 \tag{1}$$

$$R^*(t) \ge R \otimes \beta(t) = \inf_s \{R(s) + \beta(t-s)\}, \quad \forall \ 0 \le s \le t \ (2)$$

→ arrival curve
→ The bound.
→ service curve



Fig. 4. Computation of backlog bound and delay bound.

#### **Network calculus theory**

**CDT: Control Data Traffic** 



### Industrial automation network modeling

#### • Topology, flows, and shapers.



#### FLOW DESCRIPTION

| Flow path                                                                                                                                                                                                                                                                                                                                                                                                                                    | Traffic Type | Forwarding       | Priority |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|----------|
| $\begin{array}{c} p_1: \ B, \ S_1, \ b_1 \\ p_2: \ B, \ S_1, \ b_1, \ b_2 \\ p_3: \ b_1, \ S_1, \ B \\ p_4: \ b_2, \ b_1, \ S_1, \ B \\ p_5: \ C, \ S_2, \ c_3 \\ p_6: \ C, \ S_2, \ c_3, \ c_4 \\ p_7: \ c_3, \ S_2, \ C \\ p_8: \ c_4, \ c_3, \ S_2, \ C \end{array}$                                                                                                                                                                      | Isochronous  | CDT (SP)         | I        |
| $\begin{array}{l} p_9: \ B, \ 1, \ S_2, \ C \\ p_{10}: \ C, \ S_2, \ S_1, \ B \\ p_{11}: \ A, \ S_1, \ B \\ p_{12}: \ B, \ S_1, \ A \\ p_{13}: \ A, \ S_1, \ S_2, \ C \\ p_{14}: \ C, \ S_2, \ S_1, \ A \\ p_{15}: \ C, \ S_2, \ c_1 \\ p_{16}: \ C, \ S_2, \ c_1, \ c_2 \\ p_{17}: \ c_1, \ S_2, \ C \\ p_{18}: \ c_2, \ c_1, \ S_2, \ C \\ p_{19}: \ b_3, \ b_2, \ b_1, \ S_1, \ B \\ p_{20}: \ B, \ S_1, \ b_1, \ b_2, \ b_3 \end{array}$ | Cyclic       | SR Class A (CBS) | 2        |
| p <sub>21</sub> : D <sub>1</sub> , S <sub>2</sub> , C<br>p <sub>22</sub> : D <sub>2</sub> , S <sub>2</sub> , S <sub>1</sub> , A<br>p <sub>23</sub> : D <sub>3</sub> , S <sub>2</sub> , S <sub>1</sub> , B                                                                                                                                                                                                                                    | AN           | SR Class B (CBS) | 3        |
| $\begin{array}{c} p_{24};A,S_1,B\\ p_{25};B,S_1,A\\ p_{26};A,S_1,S_2,C\\ p_{27};C,S_2,S_1,A \end{array}$                                                                                                                                                                                                                                                                                                                                     | BE           | BE (SP)          | 4        |

Fig. 5. Simulation topology

Most of the information used for modeling is referenced to past 60802 contributions and 60802 use case draft.

#### Industrial automation network modeling



#### FLOW DESCRIPTION

| Flow path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Traffic Type     | Forwarding                    | Priority |                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|----------|----------------------------------------------------------------------|
| $\begin{array}{l} p_1: \ B, \ S_1, \ b_1 \\ p_2: \ B, \ S_1, \ b_1, \ b_2 \\ p_3: \ b_1, \ S_1, \ B \\ p_4: \ b_2, \ b_1, \ S_1, \ B \\ p_5: \ C, \ S_2, \ c_3 \\ p_6: \ C, \ S_2, \ c_3, \ c_4 \\ p_7: \ c_3, \ S_2, \ C \\ p_8: \ c_4, \ c_3, \ S_2, \ C \end{array}$                                                                                                                                                                                                                                                                                                   | Isochronous      | CDT (SP)                      | 1        | Lmax=0.8kb<br>T=2ms (cycle time)<br>Lmax=0.8kb<br>T=1ms (cycle time) |
| $\begin{array}{c} p_{9} : \ B, \ 1, \ S_{2}, \ C \\ p_{10} : \ C, \ S_{2}, \ S_{1}, \ B \\ p_{11} : \ A, \ S_{1}, \ B \\ p_{12} : \ B, \ S_{1}, \ A \\ p_{13} : \ A, \ S_{1}, \ S_{2}, \ C \\ p_{14} : \ C, \ S_{2}, \ S_{1}, \ A \\ p_{15} : \ C, \ S_{2}, \ c_{1} \\ p_{16} : \ C, \ S_{2}, \ c_{1} \\ p_{16} : \ C, \ S_{2}, \ c_{1} \\ c_{1}, \ S_{2}, \ C \\ p_{18} : \ c_{2}, \ c_{1}, \ S_{2}, \ C \\ p_{18} : \ c_{2}, \ c_{1}, \ S_{2}, \ C \\ p_{19} : \ b_{3}, \ b_{2}, \ b_{1}, \ S_{1}, \ B \\ p_{20} : \ B, \ S_{1}, \ b_{1}, \ b_{2}, \ b_{3} \end{array}$ |                  | SR Class A (CBS<br>=50%Bandwi |          | Lmax=0.8kb<br>T=10ms                                                 |
| $\begin{array}{c} p_{21} : \ D_1, \ S_2, \ C \\ p_{22} : \ D_2, \ S_2, \ S_1, \ A \\ p_{23} : \ D_3, \ S_2, \ S_1, \ B \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                       | AN<br>IdleSlopeB | SR Class B (CBS<br>=25%Bandwi |          | Lmax=12kb<br>r=1Mbps                                                 |
| $\begin{array}{c} p_{24}:A,S_1,B\\ p_{25}:B,S_1,A\\ p_{26}:A,S_1,S_2,C\\ p_{27}:C,S_2,S_1,A \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BE               | BE (SP)                       | 4        | Lmax=12kb                                                            |

Most of the information used for modeling is referenced to past 60802 contributions and 60802 use case draft.

#### **Simulation results**

- The worst-case latency bound result with different bandwidth usage (i.e., different number of flows).
- Assuming that the latency requirement is 50%\*T (cycle time) for all isochronous traffic, and is T for all cyclic traffic, then the result satisfies the requirement.
- Generally, the latency requirement could be tighter for isochronous cyclic real-time traffic and looser for cyclic real-time traffic.



### **Simulation results**

- The worst-case latency bound result with different bandwidth usage (i.e., different number of flows).
- Assuming that the latency requirement is 50%\*T (cycle time) for all isochronous traffic, and is T for all cyclic traffic, then the result satisfies the requirement.
- Generally, the latency requirement could be tighter for isochronous cyclic real-time traffic and looser for cyclic real-time traffic.
- If the latency requirement is 20%\*T for isochronous traffic,,, oops!
- > What if there are even more flows, or more hops, or...



## **Simulation results**

• Introducing offset to periodic traffic can get a better/tighter worst-case latency bound.



• Of course, there are many other ways to get a better/tighter worst-case latency bound.

Better: to make the actual worst-case latency less. Tighter: to make the calculated worst-case latency bound closer to the actual worst-case latency (reduce pessimism).

#### Discussion

- As in real industrial automation scenarios, the number of flows and nodes can be much larger than the model used in this paper, will network calculus still be able to provide a useful result of latency bound?
  - How to improve the NC math to get a tighter bound while the calculating complexity is acceptable?
  - How is the performance of ATS, or CBS/ATS combines with TAS?
  - How to optimize the parameter configuration of shapers?
  - Are there any better ways to describe a flow besides "b+rt"?

• Besides,

- Any other thoughts and concerns about using network calculus to calculate the worst-case latency bound for industrial automation scenarios?
- How to make the industrial automation network modeling closer to the real case?

Hope to get feedback from the group.

Thank you