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Abstract 
 

Variants of Cyclic Queuing and Forwarding (CQF, IEEE Std 8021Q-
2018 Annex T) are presented.  CQF requires that all nodes run at 
the same frequency, but does not require that all output ports’ 
cycles be in phase.  Using three buffers (or more) allows for long 
links, and supports short/long path recombination.    Running 
multiple instances of CQF on one port at different cycle rates can 
give good latency and bandwidth utilization for a mix of Streams 
with very different bandwidth requirements.  These improvements 
require little or no alteration of IEEE 802.1Q, and like the original 2-
buffer CQF, none require per-hop per-Stream dynamic state.  These 
ideas are presented for possible inclusion into IEEE P802.1DF TSN 
Profile for Service Provider Networks. 

1 Introduction 
 
The remainder of section 1 defines the domain of interest of this paper.  Section 2 provides a 
detailed timing model for Cyclic Queuing and Forwarding (CQF, IEEE Std 802.1Q-2018 Annex T).  
It shows how two, three, or more buffers can be used to manage the allocable bandwidth and 
per-hop delay, and why the systems’ CQF cycles do not have to operate in phase.  Section 3 
shows how multiple instances of CQF can be run on the same output port, with different cycle 
times, in order to efficiently serve Streams with a wide range of bandwidth and latency 
requirements.  Section Error! Reference source not found. lists a number of further 
augmentations that can be made to CQF to improve bandwidth utilization and worst-case 
latency. 
 
This paper assumes the reader is reasonably familiar with CQF as described in IEEE Std 802.1Q 
Annex T.  The frame timestamps used in this paper are described in IEEE Std 802.3-2018 clause 
90.  Preemption, or interspersed express traffic, is described in IEEE Std 802.3-2018 clause 99 
and IEEE Std 802.1Q-2018 clause 6.7.2.   
 

1.1 BL/ZCL Quality of Service 
 
TSN (and IETF DetNet) supply a Quality of Service (QoS) to a critical data flow, or “Stream”.  This 
QoS is: 
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a. An absolute upper bound on the end-to-end latency to frames belonging to the Stream.  

(Bounded Latency, BL); and 
b. A guarantee that no frames of the Stream will be discarded due to a buffer being full 

when the frame arrives at an intermediate hop (Zero Congestion Loss, ZCL). 
 
This QoS, which we will call BL/ZCL, is made possible by a promise, made by the source of a 
Stream, to not exceed a contracted bandwidth and maximum frame size.  This guarantee allows 
the network to run a resource reservation procedure that dedicates resources to a particular 
Stream (or sometimes, to a class of similar Streams) at every hop through the network, before 
the first frame of the Stream can be transmitted. 
 

1.2 Continuous Streams 
 
We can divide the Streams that can make use of the BL/ZCS QoS into two classes: 
 

• Continuous Streams can be usefully characterized by a maximum frame size, and a 
maximum bandwidth. 

• Scheduled Streams transmit on a regular, repeating schedule. 
 
Note that these two categories do not encompass all possible data flows.  Bursty, irregular 
flows are not Streams, in the sense that it is difficult, in the presence of multiple of these flows, 
to guarantee BL/ZCS except by gross overprovisioning and an extensive analysis of worst-case 
inter-Stream interference scenarios. 
 
Scheduled Streams can be handled by using IEEE Std 802.1Qbv (now IEEE Std 802.1Q-2018 
clause 8.6.8.4, Enhancements for Scheduled Traffic) to schedule frames in detail.  They are of 
no interest to this paper.  This paper Is concerned only with continuous Streams. 
 

1.3 Store-and-forward 
 
We will deal here only with store-and-forward systems, where whole transmission units are 
received, enqueued, and forwarded on another link.  That is, we will not attempt to reconcile 
CQF with cut-through forwarding.  We will, however, consider ways in which frames can be 
subdivided and/or preempted to reduce the size of transmission units.1 

2 CQF timing model 
 
We have two nodes, A and B.  Both are running an instance of Cyclic Queuing and Forwarding 
on each of multiple ports, more-or-less as described in IEEE Std 802.1Q-2018 Annex T.  We will 

 
1 The reader may also be familiar with the terms, “bulk streams” and “intermittent streams,” defined in 7.1.1 of 
IEEE Std 802.1CB-2017.  These terms have meaning only in the context of choosing an algorithm for use by the 
802.1CB sequence recovery function. 
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assume that nodes A and B are synchronized with each other in time to some accuracy that is 
significantly smaller than the CQF cycle time.  We do not assume that the output buffers switch 
in synchrony; they can be out of phase. 
 
After a gate open/close event on a particular port, node A transmits all of the frames in one 
cyclic buffer towards receiving node B, not necessarily in a single burst.  After some gap 
following the transmission of the last frame in the buffer, another gate open/close event is 
performed.  At this point, it starts transmitting the frames from the next cyclic buffer.  The gate 
open/close events in both nodes happen regularly, with the same period TC.  At the next hop, 
node B must be able to assign each received frame to a transmit buffer such that 1) frames that 
were in the same buffer in node A, and are transmitted on the same port from node B, are 
placed into the same buffer in node B; and 2) frames in different buffers in node A are placed in 
different buffers in node B. 
 
Figure 1 shows an example of Cyclic Queuing and Forwarding.  Node A and Node B are 
transmitting at the same frequency, but are offset by 0.1TC, as shown by timelines 1 and 4.  In 
Figure 1, we use the following notation for time intervals: 
 
TC nominal (intended) period of the buffer-swapping cycle 
TI maximum interference from lower-priority queues, one frame or one fragment 
TV sum of the variation in output delay, link delay, clock accuracy, and timestamp accuracy 
TA the part of the cycle allocable to (reservable by) Streams 
TP worst-case time taken by additional bytes if this traffic class is preemptable 
TB end-of-cycle buffer dead time optionally imposed on node A by node B 
TW wait time during which buffer is neither receiving nor transmitting frames 
TAB effective phase difference between cycle start times for input from A and output from B 
 
Following the definitions of output gates in IEEE Std 802.1Q-2018, the red ticks in timelines 1 
and 4 in Figure 1 represent the earliest possible moment at which the first bit of the destination 
address of the first frame of the cycle can be transmitted.  These ticks are driven by the 
synchronized clock.  They are the basis for all cyclic buffer transmissions.  If Enhancements for 
Scheduled Traffic (ETS, IEEE Std 802.1Q-2018 8.6.8.4) are used for controlling the output 
buffers, the ticks are the points in time when the output gate of one queue is closed, and the 
next queue’s gate is opened.  These are the points in time as programmed into the managed 
objects that control ETS.  An implementation may need to schedule events in anticipation of the 
time specified in the managed objects in order to maximize throughput.  Note that the 
preamble of an IEEE 802.3 Ethernet frame can be transmitted before gate open event. 
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Figure 1 Reference timelines for time-based CQF

 

 

2.1 Output timeline 1 
 
Figure 1 shows an interference delay TI (the gray area) between the gate event (the red ticks in 
Figure 1) and the transmission of the first bit of the first Stream frame’s destination MAC 
address.  The interference is from frames transmitted from lower-priority queues. It is equal to 
the time required for one maximum-length transmission unit over all lower-priority queues.  
That maximum transmission unit is either a maximum-length fragment, for preemptable lower-
priority queues, or the maximum-length frame, for non-preemptable queues.  The value of TI 
depends upon the configuration of lower-priority queues. 
 
It is possible that the class of service illustrated in Figure 1 is, itself, a preemptable class.  In that 
case, a higher-priority class of service can preempt transmission of frames in this class.  
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Preempting a frame adds additional bytes to the resultant fragments, which must be accounted 
for when allocating bandwidth to a class of service.  TP represents the worst-case additional 
time required to transmit these extra bytes caused by preempting frames belonging to a CQF 
Stream.  This value is always bounded.  See below, section 3.2. 
 
There can be some variation in the time from the selection of a frame for output in node A to 
the time stamp moment, when the first bit of the destination MAC address is transmitted (see 
IEEE Std 802.3-2018 clause 90).  This is called output delay variation.  The total time between 
the transmission of the first bit of the frame and the reception of that first bit at the next hop is 
called the link delay.  Depending on the medium and the length of the link, there can be 
variations in link delay.  The worst-case variation between the two node’s clocks caused by 
accumulated frequency variations, asymmetrical links, etc., causes uncertainty between the 
transmitting and receiving nodes’ clocks, and in the determination of the link delay.  The 
inaccuracy in converting between IEEE 802.3 transmit and receive timestamps and the local 
clock that drives the gate open/close events also contributes to cycle accuracy.  The worst-case 
combination of these four items, output delay variation, link delay variation, clock/frequency 
uncertainty, and timestamp conversion inaccuracies, is labeled, TV. 
 
All of the contributions to TV are lumped together at the end of the cycle, even though 
contributions to TV are made throughout the cycle. 
 
As described below (section 2.4) the next hop can impose a buffer dead time TB on this hop.  
This is a time at the end of the cycle, during which no frames can be transmitted from the cyclic 
buffer, so that the last frame of the cycle can be received earlier than the end of the cycle. 
 
It is necessary, in order to know how much data can be transmitted in one cycle, that an 
implementation be able to transmit all of the frames in a cyclic output buffer together, at line 
rate, with no interference from lower-priority queues on the same output port.  (Interference 
from higher-priority queues is described in section 3.2.)  Given that is true, then the total time 
per cycle that can be used for transmitting Streams is: 
 

TA = TC – TI – TP – TB – TV. 
 
This TA is a maximum, local to a particular output port on a node.  It guarantees that the last 
frame of cycle (plus a possible preamble of the first frame of the next cycle) will be on the wire 
before the output gate closes.  All of the components of TA can be calculated by an 
implementation from its configuration and from knowledge of the implementation, except for 
TB and parts of TV.  TB is supplied by configuration, or by the node to which the output port is 
connected.  (It is the maximum value over all receivers, if the output link goes to a shared 
medium).  TV can be supplied either by the time sync implementation, by configuration, by 
summing the contributions of node A and node B, or by the specification of a maximum allowed 
value by a standard or an equipment purchaser. 
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Note that TA, as defined here, includes the entire transmission time of Stream data, including 
one 12-byte inter-frame gap and one 8-byte preamble for every frame.  The preamble of the 
first frame of a cycle is counted in the previous cycle due to the way in which the output gates 
are defined in IEEE Std 802.1Q.  
 

2.2 Receive timeline 2 
 
The timeline at the receiving port is timeline 2 in Figure 1.  The red ticks represent the earliest 
possible moment that the first bit of the destination MAC address of the first frame of a cycle 
can be received.  In terms of IEEE 802.1Qci (IEEE Std 802.1Q-2018 clause 8.6.5.1 Per-Stream 
Filtering and Policing), a timed input gate must open no later than this point. 
 
Received frames are assigned to a buffer based on the timestamp (IEEE Std 802.3-2018 clause 
90) on the received frame. 
 
A critical aspect of timeline 2 is its offset from timeline 4, the output timeline.  This offset is 
shown as TAB in Figure 1.  It is clear from the figure that TAB must be known in order to compute 
TB and TW.  TAB can be computed by 1) synchronizing the clocks of nodes A and B, and 2) 
measuring the link delay from node A to node B using PTP.  Other methods are also possible. 
 
Once TAB is known, all of the timing relationships shown in Figure 1 can be computed.  The 
phasing of the nodes’ output buffer cycles certainly does affect the end-to-end latency of any 
stream, so that phasing must be known when the latency is computed.  The end-to-end latency 
is no longer an integer multiple of the cycle time.  It is even possible to adjust the phasing to 
favor certain paths through the network.  
 
For a node B that is connected to and receiving cyclic frames from n other nodes, we have n 
assignment problems to solve, one for each input port on node B. 
 
If a frame is received that straddles a cycle (first be in one cycle on timeline 2 of Figure 1, and 
end frame plus inter-frame gap plus a preamble time occurs in the next cycle), then either 1) 
some part of that frame was transmitted from node A outside the cycle window TC, or 2) one or 
more of the constants, measurements, or calculations above is incorrect.  Either way, the frame 
must be discarded, or else it can cause disruption of delivery guarantees farther along in the 
network. 
 

2.3 Storing frames timeline 3 
 
The timeline at the point where frames are stored into an output buffer is timeline 3 in Figure 
1.  The red ticks on timeline 3 mark the earliest point at which the first frame transmitted from 
a particular buffer could reach the output buffers (neglecting transmission time on the input 
medium).  These ticks are offset from timeline 2 by the minimum forwarding delay, required to 
forward the frame from the input port to the output queue.  The maximum forwarding delay is 
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also shown.  The forwarding delays shown in Figure 1 include the time to install the frame in 
the output buffer and for its presence to filter through to the point that it can be selected for 
output. 
 
There are two possible buffer assignment methods shown in Figure 1: the two-buffer method, 
in which the frames received from node A buffer a are assigned to buffer c in node B, and the 
three-buffer method, where those same frames are assigned to buffer a in node B.  The slope of 
the maximum forwarding delay allows us to compute the latest moment at which frames 
received from buffer a on node A can be stored into buffer c on node B.  The shaded areas just 
below timeline 2 in Figure 1 show the time windows for buffer assignment.  If two output 
buffers are used, then frames received from buffer a on node A can be assigned on input 
(timeline 2) to buffer c only as long as they are assured of being placed into buffer c before 
node B starts transmitting buffer c.  As shown, frames from buffer a can be assigned to buffer a 
(three-buffer mode) during the entire length of the cycle on timeline 2.  Time TW in Figure 1 is 
the time during which, in three-buffer mode, buffer c is holding frames, neither filling nor 
emptying.  In 3-buffer mode, the dead buffer time TB is 0, and TB, the allocable transmission 
time, encompasses both the TB (white) and TB (red) regions in Figure 1. 
 

2.4 Calculation of TB 
 
Timeline 3 in Figure 1 shows the calculation of TB, which applies only to two-buffer mode. The 
starting point of  is the moment that the output cycle starts (the tick on timeline 4), backed up 
by the worst-case forwarding delay.  This is the last moment on timeline 3 that a frame can be 
assigned to buffer c in the example in Figure 1.  The end of TB is the end of the cycle TC, less the 
variation time TV.  In three-buffer mode, TB is zero. 
 
TB is only known to node B.  Its effect on the allocable bandwidth TA must be taken into account 
when admitting new Streams.  If a network uses a peer-to-peer control structure using, e.g. 
IEEE Std 802.1Q-2018 MSRP, then the value of TB must be made available to the previous node 
A so that node A does not exceed the reduced TA. 
 
There are many ways to deal with this issue.  Here are three: 
 

1. The value of TB can be propagated backwards to the previous node, either via 
management or via an extension of the reservation protocol. 
 

2. A node can compute the value of TB and decide whether to employ 2-buffer or 3-buffer 
mode, depending on how much bandwidth has been allocated, so far.  This, of course, 
can change previously-computed Stream’s end-to-end latency. 
 

3. All nodes in a network can be configured with a reasonable maximum value for TB.  If a 
particular input/output port pair on a particular node computes a value for TB that 
exceeds this maximum, then 3-buffer operation is required. 

 



 8 

2.5 Transmitting frames timeline 4 
 
Depending on whether two-buffer or three-buffer mode is used, one can trade off reduced 
total available bandwidth against per-hop delay.  Timeline 4 in Figure 1 shows the two options 
for the choice of which output cycle in node B is used to transmit frames that were transmitted 
from buffer a in node A. 
 

2.6 More than 3 output buffers 
 
The discussion over Figure 1, so far, assumes that the variation in forwarding delay is small, 
relative to TC.  If this is not the case, node B can use more than 3 output buffers, and assign 
received frames to buffers whose output is scheduled far enough ahead in time to ensure that, 
in the worst case, they will arrive in the buffer before the buffer begins transmitting.  This 
works only because the buffer assignment decision is made based on time-of-arrival of the 
frame at the input port, not the time-of-arrival of the frame at the output port.  
 
In certain situations, e.g. when Stream is split and traverses two paths of different lengths using 
IEEE Std 802.1CB Frame Replication and Elimination for Reliability (FRER), it can be desirable to 
purposely delay a Stream’s frames in order to match the total delay for the Stream along the 
two paths.  In this case, more than 3 output buffers can be allocated, and used to impose a 
delay of an arbitrary number of cycle times TC on every frame. 
 
This author claims, without a demonstration, that it is not difficult to implement CQF so that 
each output port in a node, and each output port along the path of a Stream, can have a 
different number of buffers, whether 2, 3, or 50.  Not only that, but one flow can use 3 buffers 
on an output port, while another flow, which needs a path-matching delay, can use 12 buffers 
on the same port.  (Of course, this would require per-flow configuration.) 

3 Multiple CQF classes of service 
 

3.1 Multiple TC model 
 
With CQF as it is described in IEEE Std 802.1Q-2018 Annex T, we are limited to a single class of 
service (a single value of TC) and to 2-buffer operation, only.  We have already discussed 3-
buffer (or more) operation.  We will now discuss the simultaneous use of more than one value 
of TC on the same output port. 
 
It can be difficult to pick a single value of TC for a network.  If the chosen value is small, then 
only a few Streams can be accommodated on any one port; all frames for all Streams must fit 
into a single TC period.  If the value chosen for TC is large, then more Streams can be 
accommodated, with a wide variation in allocated bandwidth, but the larger TC increases the 
per-hop latency.  In the ideal case, of course, every Stream would have a TC value chosen so 
that exactly one frame of a Stream is transmitted on each cycle TC. 
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While this is not always possible, we can apply multiple values of TC to a single output port, as 
shown in Figure 2. 

Figure 2 Multiple TC values 

h 3 

f g f 4 

d e d e d e 5 

a b c a b c a b c a b c a b c a b c a b c a b c 6 

 
In Figure 2, we have a schematic timeline. We are running four values of TC simultaneously.  The 
fastest (call it, “TC6”) runs at the highest priority (6).  TC5 is slower by a factor of 4 from TC6 in this 
example, and its buffers run at priority 5 (less important than priority 6).  TC4 is slower by a 
factor of 2 from TC5, and by a factor of 8 from TC6.  TC3 is 24 times slower than TC6.  The letters in 
Figure 2 label which buffer is output during the cycle.  There are 9 buffers a through i (buffer i is 
not shown).  In this example, priority 6 uses three buffers, because the timing is tight; the 
others use two each. 
 
We assume here that the receiver of a frame can identify the particular CQF instance (TC value) 
to which the frame belongs by inspecting the frame.  A TSN bridge could use the L2 priority of 
the field, for example.  An IP router could use the DSCP.  IEEE Std 802.1CB and IEEE Std 802.1Q 
provide for the use of other fields in the frame, e.g. IP 5-tuple. 
 
Since the total bandwidth of the link is not oversubscribed by Streams, each cycle, fast high-
priority and slow low-priority, is guaranteed to be able to transmit all of its frames within the 
duration of its cycle.  For example:  If 50% of TC5 is reserved, and 30% of TC3 is reserved, then 
80% of the total bandwidth has been reserved, leaving only 20% for other Streams, best effort 
traffic, and dead time.  This is shown in Figure 3, where we illustrate the timing of transmission 
of frames from three levels of CQF and the best-effort (BE) level.  Note that CQF traffic can be 
delayed within its window by interference from both higher priorities (e.g. the first priority 4 
frame) and lower priorities (e.g. the first priority 6 frame), but that it will always get out before 
the window closes, assuming that the bandwidth is not oversubscribed. 
 

Figure 3 Transmission timing 
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As is normal with CQF, a given Stream is allocated a fixed number of bits that it can transmit per 
cycle TCn.  Each Stream is assigned to the highest-numbered (fastest) CQF instance such that, at 
the Stream’s bandwidth and frame size, the Stream is fast enough to occupy space in every 
buffer at that level.  Then, CQF will maintain one or two frames in its buffers per Stream, the 
best possible latency is given that Stream, and the buffer space is not wasted in unused cycles. 
 
Of course, it is the “best possible” latency only to a certain extent.  The potential mismatch 
between the Stream’s frame rate and frame size to the available values of TCn requires some 
overprovisioning. 
 
Streams are allocated to, and thus use up the bandwidth available to, each cycle separately.  
Any cycle can allocate up to 100% of the bandwidth of that cycle’s TA, but the percentages 
allocated to all of the cycles must, of course, add up to less than 100%.  The total amount of 
buffer space required depends on the allocation of Streams to priority values.  If all Streams are 
slow and are allocated to TC4 up to a total of 100%, then full-sized buffers must be used for 
buffers h and i.  If all Streams are fast and are allocated to TC6, then only three small buffers are 
used—buffers a, b, and c are rapidly re-used.  
 
NOTE—There are many ways to allocate buffer space to individual frames.  Running CQF at 5 
levels does not increase the buffer memory requirements beyond that of 1-level CQF.  
Allocating bandwidth to slow cycle times uses more buffer space, of course, because frames 
dwell for a longer time.  This is inherent in any scheme that offers comparable low-bandwidth 
high-delay service. 
 
Given the ideal allocation described, each Stream is allocated one frame in each cycle of one 
row.  It thus gets the optimal latency for its allocated bandwidth, which may be somewhat 
oversubscribed.  If the end-to-end latency requirements of the Streams permit, a Stream can be 
assigned to a slower (lower-numbered) cycle.  This will reduce the overprovision factor, since 
the overprovision factor depends on the number of frames per cycle.  It also increases buffer 
usage, of course. 
 
Any such overprovision can equally be thought of as an increased latency for that same Stream.  
That is, if that oversubscribed Stream was the only Stream, then the TC cycle time could be 
shortened to exactly the point of 1 frame per cycle, with 0 overprovision, and thus give a faster 
latency.  Overprovision = lower latency, in this case. 
 
The maximum reserved bandwidth is supported by allocating a Stream multiple frames per 
cycle, as allowed by the Stream’s required end-to-end latency, thus minimizing overprovision. 
 

3.2 Preemption and interference 
 
Frame preemption is described in IEEE Std 802.3-2018 clause 99 and IEEE Std 802.1Q-2018 
clause 6.7.2.  Not all of the bandwidth in a cycle TC can be allocated.  The smaller the cycle time, 



 11 

the greater the impact of the interference time (TI in section 2 and Figure 1) on the allocable 
bandwidth.   
 
TI is equal to the worst-case transmit time for a single transmission from a lower-priority queue.  
This interference can occur only at the beginning of a cycle.  Since this value must obviously be 
bound, it places a requirement, that must be enforced, on all lower-priority queues that they 
either have a maximum frame size or that frame preemption is applied to the lower-priority 
queues.  If preemption is used, the maximum interference is the maximum fragment size 
(about 150 bytes, see IEEE 802.3).  The interference time is shown as a gray parallelogram 
attached to timeline 1 in Figure 1. 
 
The other time is the preemption time TP, which applies only to Streams that are preemptable.  
This case is not typical, but is possible if a large fraction of the available bandwidth is to be 
assigned to one or a few high-bandwidth Streams, and lower-priority Streams use larger 
frames.  TP is the product of (the maximum number of highest-priority transmission windows 
that can open during a single window for the level being computed) * (the per-preemption 
penalty).  Thus, in Figure 2, if priority 4 is preemptable, then there are 8 level 6 windows that 
can open.  This means that there can be 8 preemption events during one level 4 window, so the 
total preemption time TP is 8 times the preemption penalty.  (It doesn’t matter which specific 
frames are preempted; only how many such events occur.)  The preemption penalty is the 
number of bytes added when a frame is preempted, which is 4 (CRC on preempted fragment) + 
20 (inter-frame gap) + 8 (preamble for continuation fragment) = 32 bytes. 
 

3.3 TC computation 
 
If the time per cycle that is allocable to Streams is TA, then we can now state the computation 
for TC, given TA, or for TA, given TA, at each level in Figure 2: 
 

TC = TA + TP + TI + TB + TV 
 
The sum of all Stream’s bits-per-cycle allocation must be less than or equal to TA. 
 
IEEE Std 802.1Q-2018 Annex T, assumes the 2-buffer scheme, and so assumes that TB and TV are 
small enough and TC large enough to leave a useful TA.  Assuming that one’s goal is the smallest 
possible TC: 
 

a. TB can be eliminated by using the 3-buffer scheme. 
b. Implementation steps can be taken to reduce TV.  This may include steps to reduce the 

variability of the forwarding delay, the delay between selection-for-output and first-bit-
on-the-wire at the previous hop, or increased accuracy of the synchronized clock. 

c. TI can be reduced by restricting the maximum frame size of lower-priority Streams, or by 
enabling frame preemption. 
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3.4 Why integer multiples for TC? 
 
The ideal would for each Stream S to have its own TCS that gives no overprovision.  But, that 
winds up being equivalent to a per-Stream-shaper solution such as Asynchronous Traffic 
Shaping or IntServ.  The reason can be seen in Figure 4.  
 

Figure 4 Variable TC 

                                         A3                         B3                      A3 

               A2 B2 A2               B2               A2 

  

In Figure 4, we have allocated 40% of the link bandwidth to the solid red Stream in cycle 2, and 
50% of the link bandwidth to the blue striped Stream in cycle 3.  The cycles do not line up with 
an integral number of faster cycles in each period of slower cycle.  Since we cannot predict 
exactly where, during a cycle, frames can be emitted, we can get the situation shown, in the 
shaded boxes.  Buffers B2, A2, and then again, B2 emit their frames (at high priority) at the 
indicated times.  Even though the solid red Stream takes up only 40% of each level-2 cycle, it 
can output 6 frames over the course of cycle B3, thus taking up 60% of the bandwidth during 
that period.  There is, therefore, 110% of the bandwidth that must be output during the period 
that B3 is transmitting.  B3 cannot output all of its data.  Some of it must be somehow delayed, 
but there is no place to put that data.  TSN fails. 
 
Having an integral number of cycles at each layer fitting into one cycle at the next-slower layer 
ensures that the lower-priority, slower cycle, will always have sufficient time to output all of its 
frame, because the problem in Figure 4 is avoided.  It also bounds the number of preemption 
events that can steal bandwidth from a given priority level. 
 

4 Other issues 
 

4.1 Frame size problem 
 
The above discussion has largely assumed that each Stream consists of frames of a uniform size, 
equal to the Stream’s maximum frame size.  Of course, this is not always true. 
 
The advantage of uniform frame size is that, in the ideal case, one can allocate a Stream one 
frame per cycle, and choose the cycle time and/or the Stream’s bandwidth reservation so that 
there is no wasted bandwidth.  Similarly, if we imagine that a Stream alternates frames of 4000 
bit times and 800 bit times, we can allocate 4800 bit times per TC and still get perfect results. 
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But, in a service provider situation where we are allocating a certain bandwidth per customer, 
but the frame sizes are essentially random, things are not so simple.  Let us suppose that the 
maximum frame for a Stream is 13000 bit times, which is approximately equal to a maximum-
length Ethernet frame, and that the cycle time TC = 100µs.  13000/100µs = 130 Mbits/s.  But, 
allocating a bandwidth of 13000 bits/TC will not give the Stream 130 Mb/s.  In the worst case, 
one 13000 bit frame followed by one minimum-length frame = 672 bits, the Stream gets 
(13000+672)/(200 µs) = 68.36 Mb/s. 
 
We could overprovision the Stream by a factor of almost 2, keep the same TC, and get minimal 
latency.  However, we could also assign the Stream to a longer TC.  In the worst case, there are 
(13000–8) wasted bits in each cycle.  Therefore, we can guarantee 130 Mb/s using a cycle time 
of 500µs by provisioning (5*13000 + 13000 – 8)/(5*100µs), or 156 Mb/s, which is a 20% 
overprovisioning, rather than a 90% overprovisioning, at the cost of five times the per-hop 
latency. 
 
This overprovisioning/latency tradeoff is only needed for Streams that have variable frame 
sizes, such as service provider Streams.  But, for those Streams, the lengths of the links may be 
a larger source of latency than the queuing delays, so the situation may not be so bad.  Also, 
any unused bandwidth is available to non-TSN data, so overprovisioning may not be a serious 
concern. 
 

4.2 Bundling 
 
IEEE Std 802.11n combines a number of Ethernet frames into a single transmission unit, in 
order to minimize the number of times per second a different transmitter starts sending data.  
Similarly, each CQF Stream, on ingress to the TSN network, can be run through a “sausage 
maker”.  That is, frames can be encapsulated using a scheme that combines and/or splits 
frames into uniform-sized chunks (sausages), either small or large, that can be carried end-to-
end through the TSN network, then split out into their original form.  This means that 
overprovisioning due to the mix of frame sizes is reduced to that required by the encapsulation, 
itself.  (In fact, that overhead can be negative, if small frames are bundled into large 
transmission units.) 
 

4.3 Tailored bandwidth offerings 
 
We can note that, in a service provider environment, overprovisioning can be almost eliminated 
by a combination of 1) bundling (4.2) and 2) offering the customer only a specific set of choices 
for a bandwidth contract, corresponding to the values of TC implemented in the provider’s 
network. 
 

4.4 Overprovisioning is not always bad 
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Overprovisioning the bandwidth (allocating more of TA than is necessary) is not always a bad 
thing: 
 

a. Allocating a Stream to a higher priority (smaller TC) than it needs reduces its worst-case 
latency.  This may be necessary to meet a Stream’s end-to-end latency requirement.  
That is, one can overprovision the frame rate in order to obtain a reduced latency.  The 
unused bandwidth is still available for best-effort traffic.  Not all TSN transmission 
selection schemes have this feature. 

b. If the total bandwidth required by critical Streams is relatively low, using faster-than-
necessary TC values will both improve latency and reduce buffer requirements in the 
network.  The allocated-but-unused bandwidth is still available to best-effort traffic, and 
thus may be of no consequence. 

 

4.5 Relationship to current standards 
 
Multiple instances of CQF, or for that matter, using more than a very few buffers per instance, 
will quickly use up the 8 buffers that IEEE Std 802.1Q-2018 provides timed output gates for.  
Some effort would, therefore, be required to reconcile multiple CQF with IEEE Std 802.1Q.  If 
the idea proves useful, however, this author does not believe that they would be difficult to 
reconcile.  
 

4.6 Fundamental CQF pros and cons 
 
The obvious downside of CQF is that it requires clock synchronization and per-port time-based 
gating.  On the other hand, CQF requires no per-Stream per-hop active state machines.  A new 
stream can be provisioned by a network controller without any interaction between the 
network controller and any of the network’s relay systems, except for configuring one system 
for ingress policing.  Furthermore, calculation of the worst-case end-to-end latency is trivial, 
and the calculation made for one allocated stream is never affected by any other allocations or 
deallocations. 


