

Automotive TSN profile based on features, architectures or requirements?

IEEE 802 Plenary, Vienna, July 2019

Daniel Hopf, Helge Zinner

www.continental-corporation.com

Content of this presentation

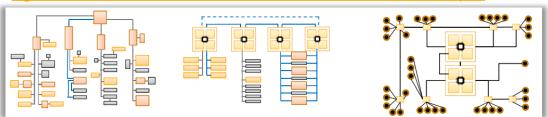
- > Example feature Common at first glance, different in detail
- Diversity in IVN architectures horizontally, vertically and in data paths
- Common base requirements the path to go?

Definitions for this presentation

- > IVN = In-Vehicle Network (all of the data communication within a vehicle, power distribution network is excluded in the cases shown here)
- Feature = E.g. Surround View, Adaptive Cruise Control, Autonomous Driving, ...
- Requirement = A specific detail of the implementation in the IVN, e.g. Startup time xxx ms, Max. Latency xx ms, ...

- What this presentation is NOT:
 - Disclosing: Showing specific numbers from real architectures
 - > Complete: There are many more features, variants, requirements, ...
 - > Definite: Please provide your opinion, open discussion!

Common automotive feature – Surround View example


Cameras
Stitching Unit
Display

- Using a Surround View (aka top-view) is a common feature amongst multiple car manufacturers and vehicle segments
 - Setup is always similar: 4 cameras, a stitching unit, a display
- Different usage however: Connecting the Surround View data with other features, e.g. autonomous parking
- > Besides the common physical layer (e.g. Automotive Ethernet), other technical aspects may be very different: Codec, frame rate, specifics of image sensor, ...

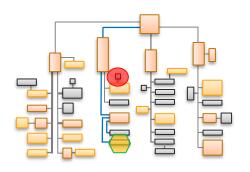
Many architectures at the same time

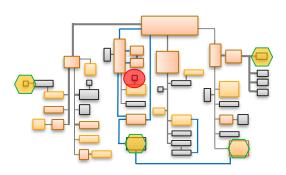
> From <u>dg-zinner-automotive-architecture-evolution-0319-v02.pdf</u>:

- > All of these architecture concepts (and probably mishmash in between) will coexist for a long time
 - > Using a new technology for a new IVN architecture takes between seven to eleven years (from http://www.ieee802.org/3/ad_hoc/ngrates/public/16_07/MGAuto_CFI_ecdc_01_0716.pdf):

Diversity among architectures

	 Architecture pattern A	Architecture pattern B	Architecture pattern C	
Architecture variant A	00500 00000000000000000000000000000000			
Architecture variant B	0.0200 6.00 0.00 1.00 0.00 0.00			
Architecture variant C				世
Architecture variant <i>n</i>	 			

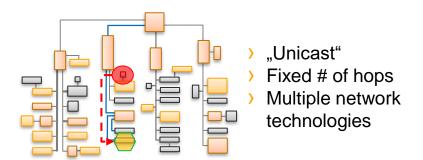


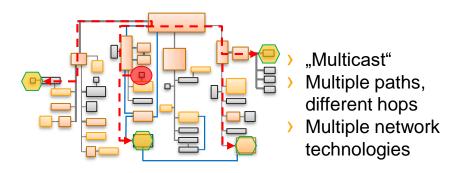

Diversity in data paths

> Same source —, same car manufacturer's architecture ***, different sinks —

IEEE P802.1DG

Public





Diversity in data paths

> Same source ●, same car manufacturer's architecture 👫, different sinks ●

Perils of feature-based approach

- Features may seem common at first glance
 - > But as motivated, they differ in the technical details
- Creating a profile based on a few features only could fit only a small number of car manufacturers
 - The profile might be not used as much because being too specific

Common base requirements

- > The good news
 - There are common requirements at least at a base level
 - Startup time
 - > Bound latencies
 - Security
 - Power concept
 - **>** ...
- > Suggestion to the group: Provide contributions with input for this sort of requirements

Some ideas for base requirements

Requirement	Goal	Derived requirements for TSN	Remark
Startup time (power off → link up)	100 – 130 ms	 After this time, the following should be working: (Fault-Tolerant) Time-Sync All shapers for data paths (all? Just critical ones?) Seamless redundancy(?) 	Source for time values: http://www.ieee802.org/3/ch /public/may17/Wienckowski _3NGAUTO_01_0517.pdf; Faster intervals? Static config? Pre-stored values?
Bound latency for audio	<= 2 ms for latency in network	Prioritization / Shaping of data	2 ms is the original value used around AVB
Fault isolation	No error propagation in the network	Ingress Filtering and PolicingCapability to silence streams after breaking contracts	Possible # of entries based on segments: low, mid, servers?

Ontinental 3