Configuration for Scheduling of Time-sensitive and Bursty Traffic (STSBT) in TSN - Summary -

November 14, 2019

<table>
<thead>
<tr>
<th>Name</th>
<th>Company</th>
<th>email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasegawa, Akio</td>
<td>Advanced Telecommunications Research Institute International (ATR)</td>
<td>ahase@atr.jp</td>
</tr>
<tr>
<td>Nishikawa, Takurou</td>
<td>Fujitsu Limited</td>
<td>nisikawa.taku@jp.fujitsu.com</td>
</tr>
<tr>
<td>Sato, Shinichi</td>
<td>Fujitsu Limited</td>
<td>sato_shinichi@jp.fujitsu.com</td>
</tr>
<tr>
<td>Itaya, Satoko</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>itaya@nict.go.jp</td>
</tr>
<tr>
<td>Kojima, Fumihide</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>f-kojima@nict.go.jp</td>
</tr>
<tr>
<td>Koto, Hajime</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>h-koto@nict.go.jp</td>
</tr>
<tr>
<td>Murata, Syuuichi</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>murata.syyuichi@nict.go.jp</td>
</tr>
<tr>
<td>Ohsawa, Tomoki</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>tohsawa@nict.go.jp</td>
</tr>
<tr>
<td>Osuga, Toru</td>
<td>National Institute of Information and Communications Technology (NICT)</td>
<td>osuga@nict.go.jp</td>
</tr>
<tr>
<td>Nakajima, Taketoshi</td>
<td>NEC Corporation</td>
<td>nakajima@cp.jp.nec.com</td>
</tr>
<tr>
<td>Maruhashi, Kenichi</td>
<td>NEC Corporation</td>
<td>k-maruhashi@bl.jp.nec.com</td>
</tr>
<tr>
<td>Onishi, Takeo</td>
<td>NEC Corporation</td>
<td>t-onishi@cj.jp.nec.com</td>
</tr>
<tr>
<td>Zein, Nader</td>
<td>NEC Europe Ltd.(NLE GmbH)</td>
<td>Nader.Zein@emea.nec.com</td>
</tr>
<tr>
<td>Nakano, Hiroki</td>
<td>NETREQS Co., Ltd</td>
<td>nakano@netreqs.co.jp</td>
</tr>
<tr>
<td>Nosaka, Tetsuya</td>
<td>Omron Corporation</td>
<td>tetsuya.nosaka@omron.com</td>
</tr>
<tr>
<td>Ohue, Hiroshi</td>
<td>Panasonic Corporation</td>
<td>ohue.hiroshi@jp.panasonic.com</td>
</tr>
</tbody>
</table>
Introduction

• This presentation is to inform the IEEE 802.1 WG participants, who have not been following up this subject, of the background and plan for the motion that will be made at the closing Plenary of the IEEE802.1 during this session.

• The subject of the motion is to authorize the January 2020 Interim to generate PAR and CSD for pre-circulation to the EC for an amendment to IEEE 802.1Q to add specification in support of the configuration for Scheduling of Time-Sensitive and Bursty Traffic (STSBT) operation.

• Applicable use cases are for multi-vendors network in factories, warehouses, hospitals, airports/stations, etc.. In this networks large number of IoT devices generate sporadic and busy traffic.

• The proposed STSBT operation was presented at the last Interim meeting in Edinburgh September 2019 [1] and further presented overview of the proposal at the TSN call on the 14 October 2019 [2].

• Overview of the foreseen modifications are shown in the following slide.

• The motion is reviewed at the TSN on Tuesday.

• Initial text for the main parts of the PAR and CSD for this amendment project are included. These are just presented here for the sole purpose of kick starting the discussion in January for the development of the PAR and CSD, if the motion is approved.

Concept of General STSBT

- Proposal: Configuration mechanism to be added in 1Q for scheduling of sporadic and bursty traffic in time-sensitive network. Details are open to discuss.

1. Shaping bursty streams for peak-shaving to mitigate peak traffic load.

2. High priority assignment for the shaped streams to avoid further delay.
Ideas of Amendments for STSBT

- Distribute information of targeted bursty traffics with "minimum bandwidth."
 \(\Rightarrow\) Amend .1Q with new information.

- Configure bridges next to source nodes to peak-shave the traffics.
 \(\Rightarrow\) Use CBS, ATS or any other shapers

- Configure bridges across the path towards the listeners to protect the STSBT streams to guarantee E2E bounded latency.
 \(\Rightarrow\) Use a queue with higher priority

- Identify streams to be controlled with this mechanism
 \(\Rightarrow\) Use .1CB/CBdb.

- In addition to the above modifications, description of the STSBT operation mechanism is needed in an Annex in 1Q.
Draft for Main parts of PAR and CSD
Main Part of PAR

• 2.1 – Project Title
Standard for Local and metropolitan area networks--Bridges and Bridged Networks
Amendment: *Scheduler for Time-Sensitive and Bursty Traffic*

• 4.2 and 4.3 Project dates
4.2 Expected Date of submission of draft to the IEEE-SA for Initial Sponsor Ballot: 03/2021

• 4.3 Projected Completion Date for Submittal to RevCom 01/2022
Main Part of PAR – cont’d

• 5.2A – Standard scope
This standard specifies Bridges that interconnect individual LANs, each supporting the IEEE 802 MAC Service using a different or identical media access control method, to provide Bridged Networks and VLANs.

• 5.2B – Project scope
This project specifies procedures and managed objects for bridges and end stations to configure and perform shapers over reduced available bandwidth links for sporadic bursty traffic type.
Main Part of PAR –cont’d

• 5.3 – Project contingency

5.3 Is the completion of this standard dependent upon the completion of another standard:

No

• 5.4 – Project purpose

Bridges, as specified by this standard, allow the compatible interconnection of information technology equipment attached to separate individual LANs.
Main Part of PAR – cont’d

• 5.5 – Project need

Industrial networks serve a variety of traffic types including irregular bursty traffics which requires to be conveyed across reduced available bandwidth links with deterministic latency. Shaping is needed in order to mitigate the impact of reduced bandwidth while maintaining QoS for multiple traffic. Current bridging standards do not address configuration mechanism for shaper for reduced available bandwidth for variety of traffic types including Sporadic bursty traffic.

• 5.6 Stakeholders for the Standard:

Developers, providers, and users of networking services and equipment for streaming of time-sensitive data. This includes software developers, networking integrated circuit developers, bridge and network interface controller vendors, and users.
Describe the plan for developing a definition of managed objects. The plan shall specify one of the following:

a) The definitions will be part of this project.

b) The definitions will be part of a different project and provide the plan for that project or anticipated future project.

c) The definitions will not be developed and explain why such definitions are not needed.

This project will use method a). The managed objects definitions will be part of this project.
A WG proposing a wireless project shall demonstrate coexistence through the preparation of a Coexistence Assurance (CA) document unless it is not applicable.

a) Will the WG create a CA document as part of the WG balloting process as described in Clause 13? (yes/no)

b) If not, explain why the CA document is not applicable.

This project will use method b). This project is not a wireless project.
Each proposed IEEE 802 LMSC standard shall have broad market potential. At a minimum, address the following areas:

a) Broad sets of applicability.
b) Multiple vendors and numerous users.

The proposed amendment enhances bridges functionality allowing systems to further provision for broad variety services, applications and traffic types in reduced available bandwidth networks.

TSN has been applicable for many applications including industrial automation and other applications. This amendment further extends the application of TSN to include IoT devices broadening TSN applications and use.

Furthermore, the proposed amendment enable efficient utilization of legacy network in support of increased traffic in industrial applications.

This proposal supports network with dense IoT devices that are deployed in factories, warehouses, hospitals, market places, stadiums and etc.

Multiple vendors and users of industrial automation, professional audio-video, automotive, and other systems require complete and comprehensive management of TSN features in bridged LAN networks through common interfaces.
Main Part of CSD - Compatibility

Each proposed IEEE 802 LMSC standard should be in conformance with IEEE Std 802, IEEE 802.1AC, and IEEE 802.1Q. If any variances in conformance emerge, they shall be thoroughly disclosed and reviewed with IEEE 802.1 WG prior to submitting a PAR to the Sponsor.

a) Will the proposed standard comply with IEEE Std 802, IEEE Std 802.1AC and IEEE Std 802.1Q?

b) If the answer to a) is no, supply the response from the IEEE 802.1 WG.

The review and response is not required if the proposed standard is an amendment or revision to an existing standard for which it has been previously determined that compliance with the above IEEE 802 standards is not possible. In this case, the CSD statement shall state that this is the case.

As an amendment to 802.1Q, the proposed standard shall comply with IEEE Std 802, IEEE Std 802.1AC and IEEE 802.1Q.
Main Part of CSD - Distinct Identity

Each proposed IEEE 802 LMSC standard shall provide evidence of a distinct identity. Identify standards and standards projects with similar scopes and for each one describe why the proposed project is substantially different.

This amendment differs from existing IEEE 802.1 standard in that it address scheduling and shaper for variety of traffic types including bursty data rates traffic over links with varying bandwidth operating at reduced available bandwidth.
Each proposed IEEE 802 LMSC standard shall provide evidence that the project is technically feasible within the time frame of the project. At a minimum, address the following items to demonstrate technical feasibility:

a) Demonstrated system feasibility.

The proposed shaper is similar in principle to the ones introduced in IEEE Std 802.1Q-2018 and will build on them to provide additional capabilities.

b) Proven similar technology via testing, modeling, simulation, etc.

The technical feasibility has been demonstrated by analysis. In particular, feasibility has been shown by modeling and simulation (see http://www.ieee802.org/1/files/public/docs2019/New-NakanoZein-Scheduling_of_Time_sensitive_and_Bursty_Traffic_in_Reduced_Available_Bandwidth-0919.ppx).

This project is based on mature virtual LAN bridging and transmit selection and scheduling
Main Part of CSD - Economic Feasibility

Each proposed IEEE 802 LMSC standard shall provide evidence of economic feasibility. Demonstrate, as far as can reasonably be estimated, the economic feasibility of the proposed project for its intended applications. Among the areas that may be addressed in the cost for performance analysis are the following:

a) Balanced costs (infrastructure versus attached stations).
b) Known cost factors.
c) Consideration of installation costs.
d) Consideration of operational costs (e.g., energy consumption).
e) Other areas, as appropriate.

The well-established balance between infrastructure and attached stations will not be changed by this enhancement.

The cost factors, including installation and operational factors, are well known from similar technologies and proportional to the benefits gained.

The proposed amendment does not require additional hardware cost as it proposes STSBT shaper that can be accommodated into the current specifications.