
IEEE YANG
Some observations

Don Fedyk LabN Consulting L.L.C.

dfedyk@labn.net

Background

• During the last 6 months I’ve been looking at YANG and following
YANGsters discussions.

• As a newcomer one comment I made was it seemed like IEEE has a
more complicated YANG files than some others that are public.

• The other question I had was about automated programming and
how much detail we put in a YANG model

• Here is some more input on these two points – perhaps not complete
but a couple of insights Yangsters might consider.

Many good reasons do we do YANG

• Replace SNMP

• Give management objects standard names

• Give the objects a standard type and syntax

• Limit the values of an object to valid values, create defaults

• Re-Use standard other Models definitions

• Create dependencies and hierarchies based on component models

• Provide a Model that can be Validated and “Compiled”

• Publish in public

Comparison of YANG models

IEEE
• Build models to cover the full superset of 802.1 functions
• Follow IEEE bridge component models
• Use YANG conditionals (when .. must) etc. to enable functions for

permutations of the components
• Reference IEEE Specifications

Some others:
• Use a leaner style (Based on MACsec/VLAN Models I have observed)

• Smaller descriptions
• No or minimal references

• Make heavy use of groupings
• Other – there may be a bit more here

Auto programming and initialization

Discussions around YANG:

• Originally a discussion about defaults
• One argument is initialization code is outside of YANG so don’t worry about

YANG defaults

• On the other hand YANG allows defaults and ranges why not use them?

• This led to a discussion about how simple should YANG models be.

• This led to a discussion of being able to compile YANG so why not put
in as much detail as possible.

• Where is YANG compiled? – next charts

YANG compiling to code

There are two areas YANG is being compiled today
1. For the Northbound Interface (Netconf, Restconf etc.)

• In this case - augment the models and produce code for initialization, verification, interface to
management functions
• Highly dependent on the tool chain

• Alternative is to code this manually
• This is where, for example, defaults get initialized and configuration is validated before being

committed.

2. For APIs to interface to the North bound interface from external
• YANG Development Kit (YDK) produce class objects and code from YANG.

The common link for these is the YANG modle naming and typing of objects.

Note a Validated YANG model can be used by Netconf – I don’t count this as compiling

YANG - YANG Development Kit - Ecosystem

S

Standard Module.yang

Module.py

YDK Xlate to
Netconf or
Restconf or
OpenDaylight or
gNMI

CLI
WebUI
Netconf,
Restconf,
OpenDaylight,
gNMI

IP address, port

Pyang YDK

Target System

API Access

YDK Services

pyang

User
Written
APIs:
Python
C++
Go

Classes
Objects

Services (CRUD, CODEC, Executor ..)

External System
Java
Python
APIs

Backend code,Libraries

Vendor extensions

North Bound

Use Prototypes
From YDK code

Operational Data

YDK

Config
DB

Compiling (eg confdc)

Inter process
Coms

We are defining the starting point not the whole

A more complete
model can be
specified, or
backend code can
be written

Names and types are important

Optional

Conclusions – For Discussion

• IEEE models support IEEE component model
• This does add dependencies – typically to the bridge model

• We could use more groupings to expose reusable pieces.

• Don’t worry about code generation
• yang validation – a must

• confdc yuma123 etc helps if you can run the model

• Don’t get hung up on defaults – go for functionally and readability.

• If you want code generation
• Use the standard models as a base.

• Augment these models for additional code generation

Thank You, Questions?

Tables Definition

Leaf-list – no defaults
list user-priority-tc {

key "user-priority";
description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
0 through 7 that also comprises
the numeric value of the four most
significant bits of the Port Identifier
component of the SCI for the selected SC";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf user-priority {
type uint8 {
range "0..7";

}
description

" Deleted for example ";
reference
"IEEE 802.1AE-2018 Clause 10.7.17";

}
leaf traffic-class {
type uint8 {

range "0..7";
}
description

" Deleted for example ";
reference

"IEEE 802.1AE-2018 Clause 10.7.17";
}

}

Container – with defaults
container user-priority-0 {
description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
0 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "0..7";
}
default 0;

}
}

container user-priority-7 {
description
"Each entry in the Traffic Class Table is a
traffic class, represented by an integer from
7 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "0..7";
}
default 7;

}
}

Simpler and functionally the same except for defaults

Tables Tree

Leaf-List
| +--rw user-priority-tc* [user-priority]

| | +--rw user-priority uint8

| | +--rw traffic-class? uint8

Container
| +--rw user-priority-0

| | +--rw traffic-class? uint8

| +--rw user-priority-1

| | +--rw traffic-class? uint8

| +--rw user-priority-2

| | +--rw traffic-class? uint8

| +--rw user-priority-3

| | +--rw traffic-class? uint8

| +--rw user-priority-4

| | +--rw traffic-class? uint8

| +--rw user-priority-5

| | +--rw traffic-class? uint8

| +--rw user-priority-6

| | +--rw traffic-class? uint8

| +--rw user-priority-7

| | +--rw traffic-class? uint8

