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Background

• During the last 6 months I’ve been looking at YANG and following 
YANGsters discussions.

• As a newcomer one comment I made was it seemed like IEEE has a 
more complicated YANG files than some others that are public.

• The other question I had was about automated programming and 
how much detail we put in a YANG model

• Here is some more input on these two points – perhaps not complete 
but a couple of insights Yangsters might consider.



Many good reasons do we do YANG

• Replace SNMP

• Give management objects standard names

• Give the objects a standard type and syntax  

• Limit the values of an object to valid values, create defaults 

• Re-Use standard other Models definitions

• Create dependencies and hierarchies based on component models

• Provide a Model that can be Validated and “Compiled”

• Publish in public



Comparison of YANG models

IEEE
• Build models to cover the full superset of 802.1 functions
• Follow IEEE bridge component models
• Use YANG conditionals (when .. must) etc. to enable functions for  

permutations of the components 
• Reference IEEE Specifications

Some others: 
• Use a leaner style (Based on MACsec/VLAN Models I have observed)

• Smaller descriptions
• No or minimal references 

• Make heavy use of groupings
• Other – there may be a bit more here



Auto programming and initialization

Discussions around YANG:

• Originally a discussion about defaults
• One argument is initialization code is outside of YANG so don’t worry about 

YANG defaults

• On the other hand YANG allows defaults and ranges why not use them?

• This led to a discussion about how simple should YANG models be.

• This led to a discussion of being able to compile YANG so why not put 
in as much detail as possible. 

• Where is YANG compiled? – next charts



YANG compiling to code

There are two areas YANG is being compiled today 
1. For the Northbound Interface (Netconf, Restconf etc.)

• In this case - augment the models and produce code for initialization, verification, interface to 
management functions
• Highly dependent on the tool chain

• Alternative is to code this manually
• This is where, for example,  defaults get initialized and configuration is validated before being 

committed.

2. For APIs to interface to the North bound interface from external
• YANG Development Kit (YDK) produce class objects and code from YANG.

The common link for these is the YANG modle naming and typing of objects.

Note a Validated YANG model can be used by Netconf – I don’t count this as compiling
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Conclusions – For Discussion

• IEEE models support IEEE component model
• This does add dependencies – typically to the bridge model

• We could use more groupings to expose reusable pieces.  

• Don’t worry about code generation 
• yang  validation – a must 

• confdc yuma123 etc helps if you can run the model

• Don’t get hung up on defaults – go for functionally and readability. 

• If you want code generation 
• Use the standard models as a base.

• Augment these models for additional code generation



Thank You, Questions?



Tables Definition

Leaf-list – no defaults
list user-priority-tc {

key "user-priority";
description 
"Each entry in the Traffic Class Table is a 
traffic class, represented by an integer from 
0 through 7 that also comprises 
the numeric value of the four most 
significant bits of the Port Identifier 
component of the SCI for the selected SC"; 

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf user-priority {
type uint8 {
range "0..7";

}
description  

" Deleted for example "; 
reference
"IEEE 802.1AE-2018 Clause 10.7.17";

}
leaf traffic-class {
type uint8 {

range "0..7";
}
description

" Deleted for example "; 
reference

"IEEE 802.1AE-2018 Clause 10.7.17";
}

}

Container – with defaults
container user-priority-0 {
description
"Each entry in the Traffic Class Table is a 
traffic class, represented by an integer from 
0 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for 
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "0..7";
}
default 0;

}
}

container user-priority-7 {
description
"Each entry in the Traffic Class Table is a 
traffic class, represented by an integer from 
7 (default) through 7 that also comprises the
numeric value of the four most significant bits
of the Port Identifier component of the SCI for 
the selected SC.";

reference
"IEEE 802.1AE-2018 Clause 10.7.17";

leaf traffic-class {
type uint8 {

range "0..7";
}
default 7;

}
}

Simpler and functionally the same except for defaults



Tables Tree

Leaf-List
|  +--rw user-priority-tc* [user-priority]

|  |  +--rw user-priority    uint8

|  |  +--rw traffic-class?   uint8

Container
|  +--rw user-priority-0

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-1

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-2

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-3

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-4

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-5

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-6

|  |  +--rw traffic-class?   uint8

|  +--rw user-priority-7

|  |  +--rw traffic-class?   uint8


