Conformance Class IEC/IEEE 60802

3

V2.4

4 Contributor group

	Column
Ademaj, Astrit <astrit.ademaj@tttech.com></astrit.ademaj@tttech.com>	TT
Dorr, Josef <josef.dorr@siemens.com></josef.dorr@siemens.com>	SI
Enzinger, Thomas <thomas.enzinger@br-automation.com></thomas.enzinger@br-automation.com>	BR
Hantel, Mark <mrhantel@ra.rockwell.com></mrhantel@ra.rockwell.com>	RA
Hotta, Yoshifumi <hotta.yoshifumi@eb.mitsubishielectric.co.jp></hotta.yoshifumi@eb.mitsubishielectric.co.jp>	MI
Kehrer, Stephan <stephan.kehrer@belden.com></stephan.kehrer@belden.com>	
Sato, Atsushi (Alex) <a.satou@jp.yokogawa.com></a.satou@jp.yokogawa.com>	YO
Seewald, Maik <maseewal@cisco.com></maseewal@cisco.com>	
Stanica, Marius-Petru < marius-petru.stanica@de.abb.com>	AB
Steindl, Guenter <guenter.steindl@siemens.com></guenter.steindl@siemens.com>	SI
Leurs, Ludwig <ludwig.leurs@bosch-rexroth.com></ludwig.leurs@bosch-rexroth.com>	BO

5

6 Abstract

7 This document describes an example Conformance Class based on "60802-Steindl-

- 8 ExampleSelections-0119-v02.pdf" as a starting point for feature alignment.
- 9 The parameters and values given in this document are presenting the ongoing
- 10 discussions. Currently there is no agreement which attributes, parameters and values are
- 11 mandatory within the profile.

12

13 Parameters are moved to "60802-Steindl-et-al-ExampleSelectionTables-xxxx-vxx.pdf".

2020-05-14	
------------	--

	V2.4	
14	Log	
	V0.1	Initial version
	V0.5	Update with Example Selections "Y" and "Z"
	V0.6	Update after discussion in IEC/IEEE 60802
	V0.7	Update after discussion in IEC/IEEE 60802
	V1.0	Initial public version for IEC/IEEE 60802
	V1.2	Version created during Edinburgh meeting
	V1.3	Version created in preparation for Hawaii meeting
	V1.4	Version created during Hawaii meeting
	V1.5	Version created after Hawaii meeting
	V1.6	Update after discussion in IEC/IEEE 60802
	V1.7	Tables moved to Excel for easier handling
	V1.8	Questionnaire updated
	V2.2	Feedback integrated (YO, SI)
	V2.3	Feedback integrated (ABB, B&R)
	V2.4	Alignment with Example Selection Tables
15		

V2.	4
-----	---

17	Content
	O OHIU

18		or group1
19		
20	0	
21		
22	0	
23		
24		rences
25		is and Definitions
26	2.1	Definitions8
27	2.2	EEE802 terms
28		ure selection constraints
29	3.1	General
30	3.2	Self-restriction
31	3.3	Restricting others
32		ces classes
33	4.1	General9
34	4.2	Question9
35	4.3	Drawings10
36	4.4	Feedback from contributors12
37	4.4	
38		.1 What is your understanding of constraint bridge or end-station?
39	4.4	.2 Shall a vendor independent mix between "full-blown" and "constraint" devices in
40		TSN Domain be supported?12
41	4.4	
42		upported?12
43	4.4	
44		ain be supported?12
45	4.4	
46		straint" devices in one TSN Domain be supported?12
47	4.4	5 11 1
48	TS	Domain?
49	4.4	
50	4.4	
51	4.4	.1 What is your understanding of constraint bridge or end-station?
52	4.4	
53	one	TSN Domain be supported?13
54	4.4	.3 Shall a vendor independent mix between "full-blown" devices in one TSN Domain
55	be	13 upported?
56	4.4	.4 Shall a vendor independent mix between "constraint" devices in one TSN
57	Do	ain be supported?13
58	4.4	.5 Shall a mix between vendor independent "full-blown" and vendor dependent
59	"co	straint" devices in one TSN Domain be supported?
60	4.4	.6 Is it enough to support a vendor dependent mix of "constraint" devices in one
61	TS	Domain?
62	4.4	Does the usage of end-stations follow the same model?
63	4.4	Mitsubishi13
64	4.4	.1 What is your understanding of constraint bridge or end-station?
65	4.4	.2 Shall a vendor independent mix between "full-blown" and "constraint" devices in
66	one	TSN Domain be supported?
67	4.4	.3 Shall a vendor independent mix between "full-blown" devices in one TSN Domain
68	be	upported?14

69	4.4.3.4 Shall a vendor independent mix between "constraint" devices in one TSN
70	Domain be supported?14
71 72	4.4.3.5 Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported?14
73	
	4.4.3.6 Is it enough to support a vendor dependent mix of "constraint" devices in one
74 75	TSN Domain?
75 70	4.4.3.7 Does the usage of end-stations follow the same model?
76 77	4.4.4 Yokogawa
77	4.4.4.1 What is your understanding of constraint bridge or end-station?
78 70	4.4.4.2 Shall a vendor independent mix between "full-blown" and "constraint" devices in
79 80	one TSN Domain be supported?
80	4.4.4.3 Shall a vendor independent mix between "full-blown" devices in one TSN Domain be supported?
81	
82	4.4.4.4 Shall a vendor independent mix between "constraint" devices in one TSN
83	Domain be supported?17 4.4.4.5 Shall a mix between vendor independent "full-blown" and vendor dependent
84 85	"constraint" devices in one TSN Domain be supported?
ор 86	
87	4.4.4.6 Is it enough to support a vendor dependent mix of "constraint" devices in one TSN Domain?
88	4.4.4.7 Does the usage of end-stations follow the same model?
89	4.4.4.7 ABB (including B&R)
90	4.4.5 ABB (including Bar)
91	4.4.5.2 Shall a vendor independent mix between "full-blown" and "constraint" devices in
92	one TSN Domain be supported?
93	4.4.5.3 Shall a vendor independent mix between "full-blown" devices in one TSN Domain
94	be supported?
95	4.4.5.4 Shall a vendor independent mix between "constraint" devices in one TSN
96	Domain be supported?
97	4.4.5.5 Shall a mix between vendor independent "full-blown" and vendor dependent
98	"constraint" devices in one TSN Domain be supported?
99	4.4.5.6 Is it enough to support a vendor dependent mix of "constraint" devices in one
100	TSN Domain?
101	4.4.5.7 Does the usage of end-stations follow the same model?
102	4.4.6 Others
103	5 TSN in Industrial Automation
104	5.1 General
105	5.2 Conformance Class
106	5.2.1 Standard selection
107	5.2.1.1 General
108	5.2.1.2 Terms
109	5.3 Full-blown and constrained devices
110	6 Literature and related Contributions
111	
112	

- 113
- 114

	V2.4	2020-05-14
115	Figures	
116	Figure 1 – Principle structure of an Automation System	11
117	Figure 2 – Example for possible intended usage	
118	Figure 3 Yokogawa example system architecture	
119	Figure 4 Yokogawa example CC mapping	
120	Figure 5 Yokogawa example CC mapping	
121	Figure 6 Yokogawa example CC mapping	
122		
123		
124		

	<u>V2.4</u>	2020-05-14
127	Tables	
128		
128 129 130 131		
130		
131		

	V2.4	2020-05-14
132 133	1 References	
134	60802-industrial-use-cases-0918-v13.pdf	
135	60802-Steindl-ExampleSelections-0119-v02.pdf	
136	60802-Steindl-QuantityFigures-0519-v01.pdf	
137	60802-Steindl-TimelinessUseCases-0718-v01.pdf	
138	60802-Steindl-et-al-ExampleSelectionTables-0520-v24.pdf	
139		
140		
141		
142		
143		
144		
145		
146		
147		
148		
149		
150		

- 151 **2** Terms and Definitions
- 2.1 Definitions 152
 - Conformance Class

A selection of IEC and IEEE features and quantities which allows to solve the required use cases.

2.2 IEEE802 terms 153

Priority regeneration	
Ingress rate limiting	

See IEEE 802.1Q-2018 clause 6.9.4 Regenerating priority See IEEE 802.1Q-2018 clause 8.6.5 Flow classification and metering

157 **3 Feature selection constraints**

158 **3.1 General**

- 159 The individual selection of features can be sorted into at least two classes:
- 160 Self-restriction, not influencing others
- 161 Restricting others
- 162

163 Its a process to find the right balance between "self-restriction" and "restricting others".

164 Often, defining features optional or having a few more classes is the way out of this 165 deadlock.

166 **3.2 Self-restriction**

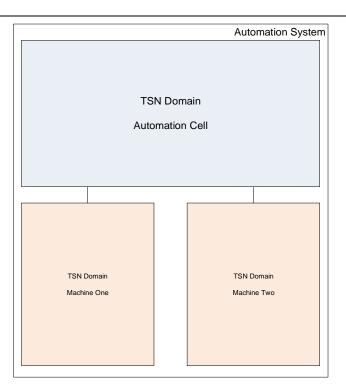
167 If a vendor of an end-station decides to support only a few queues or skip global time 168 support, then this only limits its products, but no one else.

169 3.3 Restricting others

- 170 Any bridge feature is very likely to fall into this class. Thus, the balance between the
- different interest while getting a convergent network is a key for the success of industrial
- 172 automation profile.

173 4 Devices classes

174 **4.1 General**

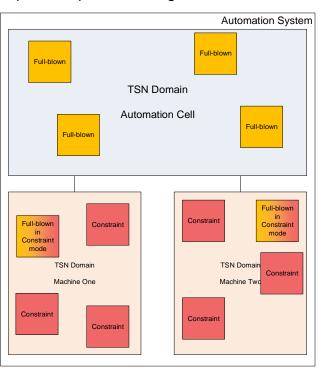

- 175 This document addresses two device classes:
- 176 Full-blown
- 177 Constrained
- 178
- 179 The term "Full-blown" is used to classify a device class which supports all needed features.
- 180 The term "constrained" is used to classify a device class which supports only a subset of 181 the "all needed features".
- 182 The understanding of the limitations of "constrained" devices (better: What are the
- 183 expectations?) needs to be aligned between the different contributors.
- 184 The following chapters show the understanding of the contributors.
- 185

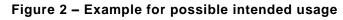
186 **4.2 Question**

- 187 Following questions are of interest for the discussion:
- 188 189

- 1. What is your understanding of constraint bridge or end-station?
- 191 Editor's note: Why do you intend to develop two classes of devices?
- 192
- 193

	V2.4 2020-05-14
194 195 196	 Shall a vendor independent mix between "full-blown" and "constraint" devices in one TSN Domain be supported?
197 198 199 200	Editor's note: This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.
200 201 202 203	3. Shall a vendor independent mix between "full-blown" devices in one TSN Domain be supported?
204 205 206	Editor's note: Follow-up to Question 2 – or is this only required for class full-blown?
207 208 209	4. Shall a vendor independent mix between "constraint" devices in one TSN Domain be supported?
210 211 212 213 214 215	Editor's note: Let's assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.
216 217 218	5. Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported?
219 220 221 222 223	Editor's note: This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.
224 225	6. Does for the end-stations the same usage model apply?
226 227 228 229 230	Editor's note: Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end- stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the editor whether we need two classes for them.
231 232	4.3 Drawings Figure 1 shows the principle structure of an Automation System.

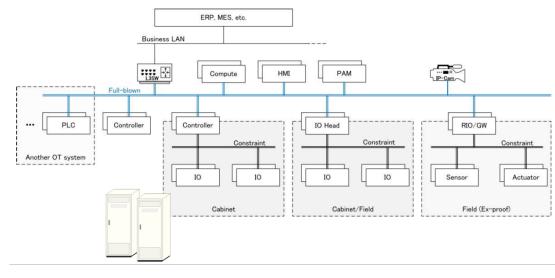



Figure 1 – Principle structure of an Automation System

235

236 Figure 2 shows one example for a possible usage of full-blown and constraint devices.

237 238


	<u>V2.4</u> 2020-05-14
240	4.4 Feedback from contributors
241 242 243	4.4.1 Siemens Ethernet is the basis of the industrial communication. TSN is now part of Ethernet and thus, basis of the industrial communication, too.
244 245	Devices are intended to be used at all layers of the automation pyramid. Thus, the basic Ethernet requirements are identical for all devices.
246 247	Constraints are only acceptable if they do not interfere with the convergence. Do not disturb the others!
248	
249 250	4.4.1.1 What is your understanding of constraint bridge or end-station? The understanding of the term "Constraint" needs to be aligned among each contributor.
251	Constraints are only acceptable if they do not interfere with the convergence.
252 253 254 255	 4.4.1.2 Shall a <u>vendor independent</u> mix between "full-blown" and "constraint" devices in one TSN Domain be supported? (This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
256	Yes
257 258 259	 4.4.1.3 Shall a <u>vendor independent</u> mix between "full-blown" devices in one TSN Domain be supported? (Follow-up to Question 2 – or is this only required for class full-blown?)
260	Yes
261 262 263 264 265	 4.4.1.4 Shall a <u>vendor independent</u> mix between "constraint" devices in one TSN Domain be supported? (Let's assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
266	Yes
267 268 269 270	 4.4.1.5 Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported? (This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)
271	No
272 273 274	<i>4.4.1.6 Is it enough to support a <u>vendor dependent</u> mix of "constraint" devices in one TSN Domain? No</i>
275 276 277 278	4.4.1.7 Does the usage of end-stations follow the same model? (Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the editor whether we need two classes for them.)

	V2.4 2020-05-14
279	Yes
280 281	4.4.2 Rockwell TBD
282 283	4.4.2.1 What is your understanding of constraint bridge or end-station? The understanding of the term "Constraint" needs to be aligned among each contributor.
284 285 286 287	 4.4.2.2 Shall a <u>vendor independent mix between "full-blown" and "constraint" devices in one TSN Domain be supported?</u> (This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
288	TBD
289 290 291	 4.4.2.3 Shall a <u>vendor independent</u> mix between "full-blown" devices in one TSN Domain be supported? (Follow-up to Question 2 – or is this only required for class full-blown?)
292	TBD
293 294 295 296 297	 4.4.2.4 Shall a <u>vendor independent</u> mix between "constraint" devices in one TSN Domain be supported? (Let's assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
298	TBD
299 300 301 302	 4.4.2.5 Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported? (This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)
303	No, but may be supported with some restrictions (limited performance, topology, etc.)
304 305 306	<i>4.4.2.6 Is it enough to support a <u>vendor dependent</u> mix of "constraint" devices in one TSN Domain? TBD</i>
307 308 309 310	4.4.2.7 Does the usage of end-stations follow the same model? (Same principle – Question 1 to 5 – for end-stations. Assumption: Pure end-stations, without integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the editor whether we need two classes for them.)
311	TBD
312	4.4.3 Mitsubishi
313 314 315 316	4.4.3.1 What is your understanding of constraint bridge or end-station? A three-port-Bridge which has constrained CPU and memory resources. Constrained bridge is mainly used in machine. It supports TSN features which is needed to converge isochronous and/or cyclic and none delay bounded communication with ±1µs TER over 100hops.
317	Constrained Bridge can reduce the functionality from Full Bridge

V2.4 2020-05-14
 by pre-configuring parameters in centralized model by specifying use case, line topology with 2 ports devices.
http://www.ieee802.org/1/files/public/docs2019/60802-Hotta-Traffic-Types-Mapping-to-TSN- Mechanism-0119-v01.pdf
by using application-layer specific mechanisms
and can be connected with Backbone network via Full Bridge.
[Comment from the editor: It is assumed that constraint devices ONLY support two external ports; It is assumed that constraint devices NEVER used as TSN domain boundary;]
4.4.3.2 Shall a <u>vendor independent</u> mix between "full-blown" and "constraint" devices in one TSN Domain be supported?No, but if they support common functions, they can be mixed.
4.4.3.3 Shall a <u>vendor independent</u> mix between "full-blown" devices in one TSN Domain be supported? Yes.
 4.4.3.4 Shall a <u>vendor independent</u> mix between "constraint" devices in one TSN Domain be supported? No, but if they support common functions, they can be mixed.
4.4.3.5 Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported? Yes, within the features of Constraint devices.
 4.4.3.6 Is it enough to support a <u>vendor dependent</u> mix of "constraint" devices in one TSN Domain? No. Full-blown devices can be mixed.
4.4.3.7 Does the usage of end-stations follow the same model? Yes.

- 344 4.4.4 Yokogawa
- This chapter provides the author's answers with supporting information from Process Automation
- 346 (PA) viewpoints, to the questions distributed to the contributors for further discussions.
- 347 Full-blown Bridge & End-station
- Typically used for a backbone network, on which a bunch of IA-Devices communicate each other using variety of OT protocols with various data rates and traffic types.
- 350 Constraint Bridge & End-station
- 351 Typically used for an (in cabinet) IO network or a field network, on which a limited number of
- friendly neighbor IA-Devices communicate each other using an OT protocol with limited data rate
 options and traffic types.

Example PA System Architecture

CC Mapping Proposal (Plan A, 3 cc)

Add ccC for Constraint PA if ccB can meet Full-blown PA requirements.

cA (Full-blo	own FA/Motio	n)			
Preemption	ccB (Constr	aint FA/M	otion, Ful	I-blown P.	A)
Cut-through	8 queues	ccC (Con			
	Large FDB	Min 4 queues	10/100Mbps	Small FDB	
_					

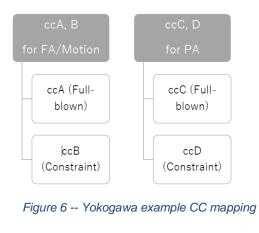
Figure 4 -- Yokogawa example CC mapping

358

355 356

357

359


CC Mapping Proposal (Plan B, 2 cc)

Separate FA/Motion specific attributes and make them optional for PA in each class.

ccA (Full-blown)	 FA/Motion specific attributes (Optional for PA) IA common attributes (Mandatory for all)
ccB (Constraint)	 FA/Motion specific attributes (Optional for PA) IA common attributes (Mandatory for all)
Figure 5	- Yokogawa example CC mapping

CC Mapping Proposal (Plan C, 4 cc)

Add ccC for Full-blown PA and ccD for Constraint PA to keep ccA & ccB perfectly fit to FA/Motion.

364

361 362

- 365
- 366
- 367 4.4.4.1 What is your understanding of constraint bridge or end-station?
- 368 The understanding of the term "Constraint" needs to be aligned among each contributor.
- Typically used for an (in-cabinet) IO network or a field network, on which a limited number of friendly neighbor IA-Devices communicate each other using an OT protocol with limited data rate options and traffic types.
- 372 Typical constraint factors:
- Limited resources due to power consumption
- e.g. MPU power, memory size
- Single OT protocol with limited functionality

376 377	Limited Traffic TypesLimited power source
378	Hazardous area installation
379 380 381 382 383	 Explosion-proof (limited power consumption) Water-/Dust-/Salt-damage-/Corrosion-/ proof Special physical layer (e.g. APL, optical fiber) support For noise protection For long distance connection
384	In-cabinet installation
385 386	Limited data rate for heat controlLimited footprint
387	Switch-less installation requirement
388	Limited topologies (line/ring)
389	Less strict performance requirements on:
390 391 392 393	 Time error Timestamp accuracy Minimum network cycle
394 395 396 397	 4.4.4.2 Shall a <u>vendor independent mix between "full-blown" and "constraint" devices in one TSN Domain be supported?</u> (This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
398	No, but may be supported with some restrictions (limited performance, topology, etc.)
399 400 401	 4.4.4.3 Shall a <u>vendor independent</u> mix between "full-blown" devices in one TSN Domain be supported? (Follow-up to Question 2 – or is this only required for class full-blown?)
402	Yes
403 404 405 406 407	 4.4.4.4 Shall a vendor independent mix between "constraint" devices in one TSN Domain be supported? (Let's assume that in a TSN Domain only class constraints is supported. This means, that a vendor independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
408 409	Yes, but only a single OT protocol (based on the same configuration mechanism) would be supported in that TSN Domain.
410 411 412 413	 4.4.4.5 Shall a mix between <u>vendor independent</u> "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported? (This means, that a mixture between vendor dependent configuration and vendor independent according to IEC/IEEE 60802 definitions of the network portion - is supported.)
414	No, but may be supported with some restrictions (limited performance, topology, etc.)

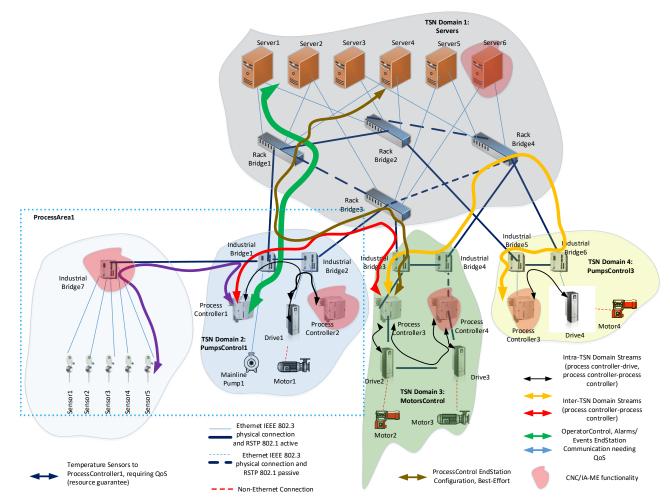
415 4	4.4.4.6	Is it enough to support a <u>vendor dependent</u> mix of "constraint" devices in one TSN	
-------	---------	--	--

- 416 *Domain?*
- 417 TDB
- 418 4.4.4.7 Does the usage of end-stations follow the same model?
- (Same principle Question 1 to 5 for end-stations. Assumption: Pure end-stations, without
 integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the
 editor whether we need two classes for them.)
- 422 Yes, available resources of pure end-stations could also be restricted according to the same 423 constraint factors.

424 4.4.5 ABB (including B&R)

- Ethernet is the basis of the industrial communication. TSN is now part of Ethernet and thus, basis of the industrial communication, too.
- 427 Devices are intended to be used at all layers of the automation pyramid.
- Nevertheless, a commonly accepted set of Ethernet requirements is under investigation in various
 SDOs and the 60802 contributes to it by the current definitions of specific TSN-related parameters.
- The notion of *network convergence* could be seen like the sharing of the same network segment/communication media by several Ethernet-based data exchange technologies (industrial automation or not), in order to achieve systems within the required performance, deployment flexibility, environmental impact and cost savings and without reliability, availability and engineering efficiency losses.
- Thus, a notion of segmentation may still be required, especially in larger projects/topologies and presence of end stations with various hardware capabilities will still be required by the engineering efficiency, cost savings and environmental impact. Loss of performance due to bottlenecks must be avoided.
- The cost savings aspect though is multi-faceted: besides the overall system costs, device-level costs
 and lifecycle-related costs must be considered, thus over-classification of 802.1 and 802.3 specific
 parameters should be avoided.
- 442

443 4.4.5.1 What is your understanding of constraint bridge or end-station?


- The understanding of the term "Constraint" needs to be aligned among each contributor.
- 445 *Constraint bridges* refer mostly to embedded bridges with their external port count which needs to 446 be smaller or equal than two. Additional aspects, for the constraint bridges could potentially be one 447 or more of the ones shown in the attached Excel sheet concerning the example selection.
- Infrastructure Bridges which are independent devices and may be used for connecting more than 2 devices together, due to a port count higher than two, can also be seen as constraint if they implement a subset of features specified in the attached Excel sheet concerning the example selection for constrained bridges.
- The rest of Infrastructure Bridges cannot be seen as constraint, due to the high number of deployment scenarios they must have the flexibility to support.
- 454
- 455

- 456 Constraint end stations may exhibit a somewhat larger variation than bridges, in terms of:
- Hardware chipset 457

- 458 Processing power 459
 - Memory sizes (of various types)
- Other aspects as described in the attached Excel sheet concerning the example selection 460

Mixing constrained and fully capable devices in a system is dependent on the required topology 461

462 and less on the TSN domains demarcation, see example:

- 465 4.4.5.2 Shall a <u>vendor independent</u> mix between "full-blown" and "constraint" devices in one TSN 466 *Domain be supported?*
- (This means, that a vendor independent configuration of the network portion of each device 467
- 468 according to IEC/IEEE 60802 is supported.)
- 469 Yes, see the example system above.
- 470 4.4.5.3 Shall a <u>vendor independent</u> mix between "full-blown" devices in one TSN Domain be 471 supported?
- 472 (Follow-up to Question 2 – or is this only required for class full-blown?)
- 473 Yes

474	4.4.5.4 Shall a <u>vendor independent</u> mix between "constraint" devices in one TSN Domain be
475 476	<i>supported?</i> (Let's assume that in a TSN Domain only class constraints is supported. This means, that a vendor
477 478	independent configuration of the network portion of each device according to IEC/IEEE 60802 is supported.)
479	Yes
480 481 482	 4.4.5.5 Shall a mix between vendor independent "full-blown" and vendor dependent "constraint" devices in one TSN Domain be supported? (This means, that a mixture between vendor dependent configuration and vendor independent

- 483 according to IEC/IEEE 60802 definitions of the network portion is supported.)
- 484 See 4.4.5.2
- 485 4.4.5.6 Is it enough to support a <u>vendor dependent</u> mix of "constraint" devices in one TSN
- 486 *Domain?*
- 487 It depends on the requirements of the TSN domain. It could be that a number of constrained
- 488 bridges and constrained end stations may be sufficient in some cases.
- 489 No
- 490 4.4.5.7 Does the usage of end-stations follow the same model?
- 491 (Same principle Question 1 to 5 for end-stations. Assumption: Pure end-stations, without
 492 integrated bridge, do have lesser impact to the overall interoperability. Thus, it's unclear to the
 493 editor whether we need two classes for them.)
- 494 Yes
- 495 **4.4.6 Others**
- 496 TDB
- 497

	V2.4 2020-05-14
498	5 TSN in Industrial Automation
499	5.1 General
500 501	Supporting a Conformance Classes shall allow interoperability for Bridges and End-Station as defined in the scope of IEC/IEEE 60802.
502 503	The document contains chapters for full-blown and constraint devices.
504 505 506	Editor's note: Please make all changes with "track changes on"
507	5.2 Conformance Class
508	5.2.1 Standard selection
509 510	5.2.1.1 General A Conformance Class selects out of the following standards
511	IEEE802.3-2018 - IEEE Standard for Ethernet
512	IEEE802.1Q-2018 - Bridges and Bridged Networks
513	IEEE802.1AB-2016 - Station and Media Access Control Connectivity Discovery
514	IEEE802.1AS-2020 - Timing and Synchronization for Time-Sensitive Applications
515	IEEE802.1CB-2017 - Frame Replication and Elimination for Reliability
516	
517 518 519	5.2.1.2 Terms Supported: This feature is used in any class of device
520 521 522	Support, but optional: This feature is intended to be used in some class of device. For silicon vendors, these topics may be "supported", too.
523 524	Not used: The used and thus the support of this feature is not intended.
525 526	Ω / TBD: Not provided until agreed release date for this version.
527 528	—: No quantities, because the assigned feature is not supported.
529 530	???: The responsible editor is not able to fill this cell without a discussion with the other

531 contributors.

5.3 Full-blown and constrained devices 533

534

See "60802-Steindl-et-al-ExampleSelectionTables-0520-v24.pdf" available at http://www.ieee802.org/1/files/public 535

536

V2.4	2020
6 Literature and related Contributions	
Literature:	
[1] "Cyber Physical Systems: Design Challenges", E. A. Lee, UCB/EECS-2008-8; <u>http://www.eecs.berkeley.edu/Pubs/Tec</u> <u>8.html</u>	
[2] Becker's, K. (2015). Pattern and Security Requirements: Establishment of Security Standards; Springer; ISBN 97833	
[3] PI: Isochronous Mode – Guideline for PROFINET IO; V1. http://www.ieee802.org/1/files/private/liaisons	0; June 2016; available a
Related contributions:	
[4] LNI traffic patterns for TSN: http://www.ieee802.org/1/files Bruckner-LNI-traffic-patterns-for-TSN-0118.pdf	s/public/docs2018/new-
[5] Multivendor Motion Control: <u>http://ieee802.org/1/files/pub</u> enzinger-multivendor-motion-control-0318-v01.pdf	lic/docs2018/new-industri
[6] Hierarchical Domain based Network: http://www.ieee802.org/1/files/public/docs2018/60802-harimy v04.pdf	a-industrial-use-case-051
[7] Process Automation System Quantities: http://www.ieee802.org/1/files/public/docs2018/60802-sato-p v01.pdf	ba-system-quantities-0718
[8] TSN Interdomain Communications: http://www.ieee802.org/1/files/public/docs2018/60802-Hante Communications-0718.pdf	I-TSN-Interdomain-
[9] Cycle Timing Models: <u>http://www.ieee802.org/1/files/publ</u> cycle-timing-models-0718-v04.pdf	<u>ic/docs2018/60802-enzin</u>
[10] Isochronous Drive Synchronization: http://www.ieee802.org/1/files/public/docs2018/60802-enzing drive-synchronization-0718-v01.pdf	ger-use-case-isochronous
[11] Machine Internal and Machine to Cell Controller (M2C) I http://www.ieee802.org/1/files/public/docs2018/60802-essler v01.pdf	

	V2.4 2020-05-14
581	[12] Coexistence & Convergence in TSN-based Industrial Automation Networks:
582	http://www.ieee802.org/1/files/public/docs2018/60802-stanica-convergence-coexistence-
583	0718-v03.pptx
584	
585	[13] Flexible Manufacturing System (FMS) for Small Batch Customized Production:
586	http://www.ieee802.org/1/files/public/docs2018/60802-Bai-small-batch-customized-
587	production-0718-v01.pdf
588	
589	[14] Multi-traffic transmission in industrial backbone network:
590	http://www.ieee802.org/1/files/public/docs2018/60802-chen-multi-traffic-transmission-on-
591	backbone-0918.pdf
592	
593	
594	