
P802.1CQ PDU Format v2

Antonio de la Oliva (Interdigital)
(aoliva@it.uc3m.es)

Roger Marks (EthAirNet Associates)
(roger@ethair.net)

2020-11-05 1

mailto:aoliva@it.uc3m.es
mailto:roger@ethair.net

Copyright information
Portions of this document (brief quotes from IEEE Std 1722) are
Copyright © IEEE. As a result, per IEEE copyright policy:

• this document is “Previously Published”
• the contributors fulfil the responsibility to immediately inform the

WG Chair that the contribution requires permission from copyright
owner(s) and cannot be presented or included in the draft until that
permission is granted, and offering to assist the WG Chair in
requesting the permission, if possible
• the WG Chair is responsible to use the IEEE-SA Permission Request

and Response Form Templates to request permission
(http://standards.ieee.org/develop/stdsreview.html)

2

Background

•MAAP is currently specified in IEEE Std 1722
• Intention to move MAAP to P802.1CQ and enhance it
• See “MAAP Integration into P802.1CQ”
• cq-marks-oliva-MAAP
• 2020-10-26

3

MAAP Compatibility
• Per 1722-2016: The maap_version field identifies the version of MAAP

being used. The current version of MAAP is one (1).
• Forward Compatibility, per 1722-2016:
• All MAAP AVTPDUs received that contain a higher version number and a

message type that is defined in the implemented version of MAAP shall be
interpreted using the implemented version of MAAP, ignoring all unknown
fields. This requires that future versions of MAAP maintain compatibility with
the message types implemented in all previous versions of MAAP.
• All MAAP AVTPDUs received that contain a higher version number and a

message type that is not defined in the implemented version of MAAP shall be
ignored.

• Backward Compatibility, per 1722-2016:
• MAAP AVTPDUs that carry a protocol version lower than the protocol version

implemented by the receiver shall be interpreted according to the protocol
definition corresponding to the protocol version received in the MAAP AVTPDU.

4

AVTPDU common control header

● Per 1722: The version field specifies the version of the format. Unless explicitly
defined by a format definition, this field shall be set to zero (0) on transmit and
verified on receive. If the Listener receives an AVTPDU with a version that it does not
support, it shall discard the AVTPDU.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

00 subtype sv version format_specific_data control_data_length

04

stream_id
08

12

control_data_payload
(addi onal header and data - varies by format)

IEEE 1722 AVTPDU common control header

5

0 The stream_id field is not used or is defined by the format=FE for MAAP

Legacy MAAP PDU format
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

00

subtype=FE sv
=0 version=0 message_type maap_version=1 control_data_length=16

04

stream_id=008

12
request_start_address

16
request_count

20
conflict_start_address

24
conflict_count

6

Legacy MAAP PDU messages

message_type Name maap_version

0 reserved

1 PROBE 1

2 DEFEND 1

3 ANNOUNCE 1

4-16 reserved

7

Pre-existing MAAP message types, enhanced

MAAPv1 devices
• can send MAAPv1 (maap_version 1) messages

• can read MAAPv1 messages

• can read MAAPv2 message_type 1, 2, and 3
• All MAAP AVTPDUs received that contain a higher

version number and a message type that is defined in
the implemented version of MAAP shall be
interpreted using the implemented version of MAAP,
ignoring all unknown fields.

message_type Name maap_version

0 reserved

1 PROBE
1

2

2 DEFEND
1

2

3 ANNOUNCE
1

2

8

MAAPv2 PDU, legacy message types (1,2,3)
0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

00

subtype=FE sv
=0 version=0

message_type
=

1,2,3

maap_version=
2 control_data_length=16

04
Other control information Message_subtype Other control information

08 Other control
information ID Other control information

12
request_start_address

16
request_count

20
conflict_start_address

24
conflict_count

9

New MAAPv2 message types
MAAPv1 devices

• can send MAAPv1 (maap_version 1) messages
• can read MAAPv1 messages
• can read MAAPv2 message_type 1, 2, and 3

• All MAAP AVTPDUs received that contain a higher
version number and a message type that is defined
in the implemented version of MAAP shall be
interpreted using the implemented version of
MAAP, ignoring all unknown fields.

• ignore new MAAPv2 message_types
• All MAAP AVTPDUs received that contain a higher

version number and a message type that is not
defined in the implemented version of MAAP shall
be ignored.

• So MAAPv2 can use a new PDU format (but
aligned with AVTPDU control header format).

MAAPv2 devices
• can send all MAAPv2 messages
• can read all MAAPv1 and MAAPv2 messages10

message_type message_subtype name maap_version

0 reserved

1 PROBE
1

2

2 DEFEND
1

2

3 ANNOUNCE
1

2

4 0 DISCOVER 2

4 1 ADVERTISE 2

5 0 OFFER 2

5 1 REQUEST 2

5 2 ACK 2

5 3 RELEASE 2

6 – 16 reserved

MAAPv2 PDU, new message types
using AVTPDU common control header

11

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

00

subtype=FE sv
=0 version=0

message_type
=

4, 5
maap_version=2 control_data_length

04
Other control information

message_subtype
=

0,1,2,3
Other control information

08 Other control
information ID Other control information

12

MAC Address Set supporting multiple formats

Note: MAC Address Set field not drawn to scale

ID field and tie breaking

• Client: 12 bits flat ID (tie breaks performed based on MAC address)
• Server: 4 bits priority, 8 bits Network ID. Both set by admin.

• Case of multiple servers within same network-> tie break by priority
• Please note that in the spec it is recommended servers are provisioned with disjoint address sets

• Case of merging networks -> periodic message from servers indicating their presence.
With Network ID merging of networks can be detected (same network ID means servers
are coordinated).
• You do nothing
• You claim same address to both servers (bit indicating multiple servers are found in the network

with different Network ID, in the OFFER)àbehavior at this stage out of scope

12

0 1 2 3 4 5 6 7 8 9 10 11

Priority Network ID

Conclusion
• For existing MAAPv1 message types, specify enhanced MAAPv2

versions
• Can be read and understood by legacy MAAPv1 devices
• New fields are ignored

• For new message types, retains the AVTPDU header format and
subtype and add new fields, including message_subtype
• ignored by legacy MAAPv1 clients.
• enable the new functionality expected from IEEE 802.1CQ
• e.g. server-assigned addresses and new address formats

• New PDU format presented to IEEE 1722 (20 October 2020) with
encouraging positive feedback

13

