

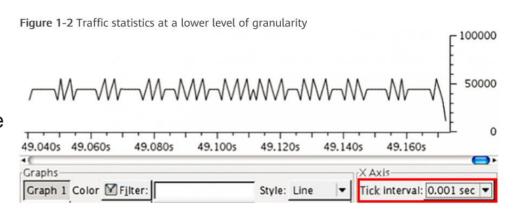
TSN for Service Provider Networks - Use cases / Requirement

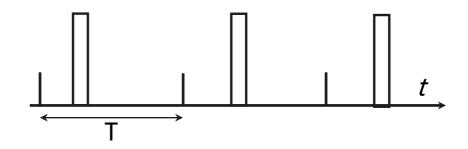
	Resourc e Type	Default Priority Level	Packet Delay Budget	Packet Error Rate	Default Maximum Data Burst Volume(NOTE 2)	Default Averaging Window	Example Services		
1		20	100 ms	10 ⁻²	N/A	2000 ms	Conversational Voice		
2		40	150 ms	10-3	N/A	2000 ms	Conversational Video (Live Streaming)		
3	GBR -	30	50 ms	10-3	N/A	2000 ms	Real Time Gaming, V2X messages Electricity distribution – medium voltage, Process automation - monitoring		
4	NOTE 1	50	300 ms	10-6	N/A	2000 ms	Non-Conversational Video (Buffered Streaming)		
65 66	NOILI	- Band	 lwidth	Sensitiv	e Services	2000 ms 2000 ms	Mission Critical user plane Push To Talk voice (e.g., MCPTT) Non-Mission-Critical user plane Push To Talk voice		
67	Ī	_ 12	100 ms	10	N/A	2000 ms	Mission Critical Video user plane		
75		25	50 ms	10-2	N/A	2000 ms	V2X messages		
5		10	100 ms	10-6	N/A	N/A	IMS Signalling		
6		60	300 ms	10-6	N/A N/A Video (Buffered Streaming) I CP-based (e.g., www, e-mail, chat, ft file sharing, progressive video, etc.)				
7	No.	70	100 ms	10-3	N/A	N/A	Voice, Video (Live Streaming) Interactive Gaming		
8	Non- GBR NOTE1-	- ⁸⁰	nection Service		N/A	N/A	Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)		
69	MOLET	-			N/A	N/A	Mission Critical delay sensitive signalling (e.g., MC-PTT signalling)		
70		55	200 ms	10-6	N/A	N/A	Mission Critical Data (e.g. example services are the same as QCI 6/8/9)		
79		65	50 ms	10-2	N/A	N/A	V2X messages		
80		68	10 ms	10-6	N/A	N/A	Low Latency eMBB applications Augmented Reality		
81		11	5 ms	10-5	160 B	2000 ms	Remote control (see TS 22 261 [2])		
82	Delay	12	10 msNOTE	10-5	320 B	2000 ms	Intelligent transport systems		
83	Critical	[–] URLI	LC Late	ncy Sen	sitive Services)0 ms	Intelligent Transport Systems		
84	GBR		TO 1112	το .	ل درح	∠uJ0 ms	Discrete Automation		
85		22	10 ms	10-4	1358 B Note 3	2000 ms	Discrete Automation		

3GPP SA2 Table 5.7.4-1: Standardized 5QI to QoS characteristics mapping

Three main types for services co-exist in 5G carrier networks, especially in backhaul networks or metro networks, according to 3GPP requirement document.

- > <u>Bandwidth sensitive services</u> care more about throughput as long as its short term bursting can be buffered and transit later.
- Latency sensitive services are new applications appear with new era carrier networks. TSN techniques are most useful on this aspect.
- Connection services are the legacy services on 802 or IP networks.


Differentiated SLA in Service Provider Networks


Type 1 Bandwidth sensitive application

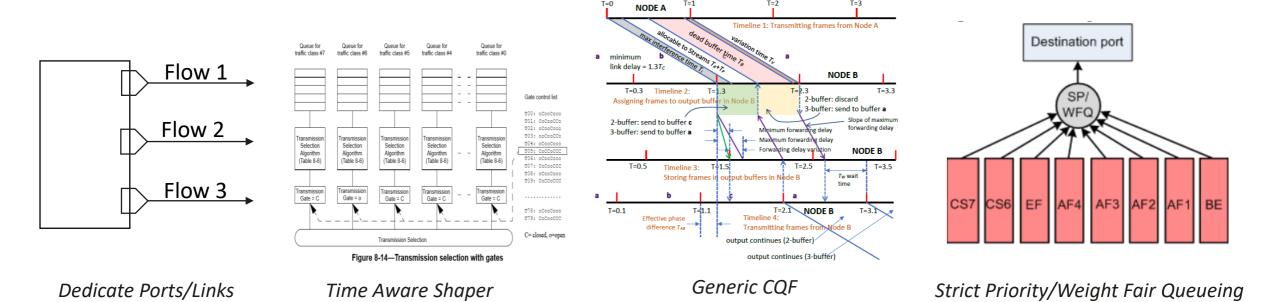
- Care more about average rate and peak rate, usually have CIR/PIR parameters to specify user requirements. Not so much on latency, have tolerance on microburst and congestion, use buffering to solve bursting and gaps in data stream.
- > Use cases : TV/Sport Videos, Surveillance Video, etc.

Type 2 Latency sensitive application

- Care more about bounded latency, have T-SPEC parameter to specify traffic model (TrafficInterval, BurstSize), and latency bound requirement.
- > Use cases : Smart Grid Teleprotection, Cloud VR.
- Type 3 Connection services
 - > Messages

TSN Toolbox on Forwarding Plane

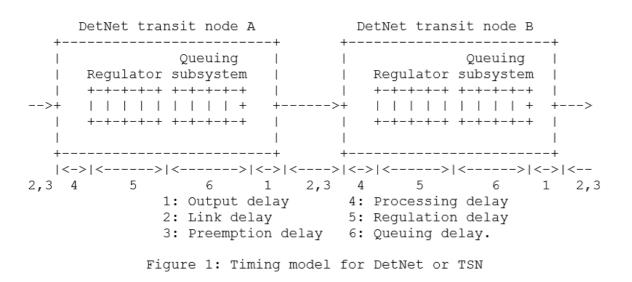
Both scheduling and shaping functions affect latency bound. For some specific TSN techniques, they have shaping and scheduling function combined together.


- > TAS/Async TAS; (Refer to IEEE Std 802.1Qbv)
- > Generic CQF; (Refer to IEEE Std 802.1Qch)
- > Strict Priority/WRR; (Refer to IEEE Std 802.1Q-2018)
- > CBS/BLS; (Refer to IEEE Std 802.1Qav)
- > Dedicated physical lines

Some techniques are more for bounded latency, some others are more about to get low jitter; while Strict Priority/WRR algorithms generally have lower average delay and may benefit on bandwidth utilizations.

Within Smart Grid scenarios, we compared legacy QoS algorithms(Strict Priority/Deficit Round Robin/etc.) and dedicated physical lines to ensure that with fundamental 802.1 TSN techniques, bounded latency services can be achieved in service provider networks; nevertheless, performance on latency and jitter varies.

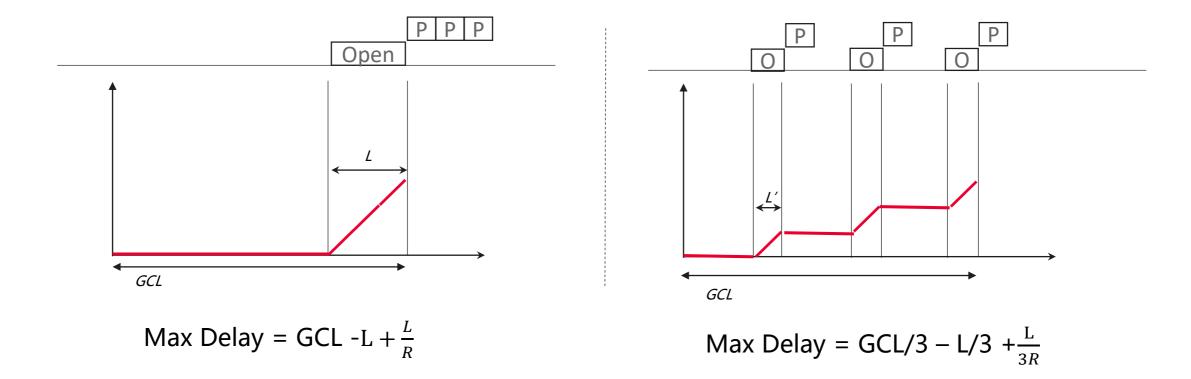
TSN Toolbox on Forwarding Schedulers and Shapers


(2 buffer/3buffer/etc.)

By using different schedulers and shapers, multiple types of traffic are transmitted with differentiated service levels (SLA) on shared network resources;

This is similar to network slicing concept, to divide network up and share among users/applications; TSN techniques are capable to support network slicing with multiple levels of service guarantee;

Delay Decomposition and Comparison



	Queueing Delay				
Dedicate Port	$D_{Port} = \frac{b}{R}$; //R is output port data rate				
TAS	Depends on GCL configuration and traffic timing; //need more assumption to compare				
CQF	2 * Tc; //more analysis from Norman's whitepaper				
SP/WFQ	$\frac{b_i}{R \frac{Q_i}{\sum Q}} + \frac{b}{R}$ //Q _i is the share of the bandwidth for flow i				
CBS	$T^A = \frac{1}{R} \left(L^A + \frac{\bar{L}}{R} \right)$ //for Class A traffic, assuming no CDT				

https://tools.ietf.org/html/draft-finn-detnet-bounded-latency-04

TAS Latency Analysis

- Max Delay on TAS scheme depends on whether gate control configurations suits with traffic bursts;
- Complex TAS configuration schemes may cause more complicated latency formula;

L. Zhao, P. Pop and S. S. Craciunas, "Worst-Case Latency Analysis for IEEE 802.1Qbv Time Sensitive Networks Using Network Calculus," in IEEE Access, vol. 6, pp. 41803-41815, 2018.

IEEE 802.1 TSN Geneva, Jan 2020

Delay Analysis in TSN for Service Provider Networks

- Comparison Between Schedulers

- Typical topology on backhaul network, with access ring, aggregate layer and backbone layer.
- Assume 8 DTU(digital transmitting unit) on access ring、16 VR stream and 40 video streams, with periodic burst traffic model.
 - ➤ Smart grid: in every 5ms, 14*380Byte. //Tight latency requirement ~2ms.
 - > VR Game : in every 15ms , 60*1522Byte (~50Mbps) //medium latency requirement ~10ms
 - ➤ Video: in every 70ms, 168*1522Byte (~30Mbps) //loose latency requirement ~10ms
- Different ways of bandwidth sharing(scheduling and shaping) cause performance varying.

Worst Case Latency Calculation (ms)	Dedicate Link	kFIFO @10G	Strict Priority @10G	Strict Priority @10G + Edge Shaping2	CQF @10G3	
Smart Grid Teleprotection	0.267 @2G	12.883	0.077 (H) 1	1.081 (H)	ТВА	
VR Game Video	3. 796 @6G 73. 438 @2G	13. 347 14. 778	2.565 (M) 23.019(L)	8.138 (M) 19.121(L)		
Worst case Latency in Simulation (ms)		FIFO @10G	Strict Priority @10G	Strict Priority @10G + Edge Shaping	CQF @10G	
Smart Grid Teleprotection	0. 244 @2G	7. 991	0. 050	0.728	TBA	
VR Game	3. 219 @6G	8. 797	1.896	7. 845		
Video	50. 257 @2G	10. 378	11. 456	11. 432		HUA

TSN for Service Provider Networks Annex: - Network Calculus

- Briefly introduce Network calculus as necessary to explain delay analysis for different schedulers and shapers. //This work may update CBS latency analysis and bring up amendment request.
- Arrival Curves :
 - > Current research on Network calculus use token bucket attributes on traffic models to setup arrive curve α (t) , such as

 $\alpha_{\sigma,\rho}(t) = \begin{cases} \rho t + \sigma, & t \ge 0\\ 0, & t < 0, \end{cases}$

while each flow has a burstsize σ , and data rate ρ ;

//Note: TSN standard usually use T-SPEC to describe input traffic model, need conversion here.

//Aggregating behavior also changes traffic model

- Service Curves:
 - > The service offer by the scheduler on an outgoing port can be characterized by a minimum service curve, denoted by β(t).
 - > Service Curves for different schedulers(Strict Priority/WRR/CBS/TAS) will be sorted out and then evaluate the queueing latency

Thank you.

把数字世界带入每个人、每个家庭、每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

