Choosing the Right TSN Tools to meet a Bounded Latency

Don Pannell
Fellow
Automotive Ethernet Networking, NXP

IEEE 802.1 TSN Interim
Sep 2020
Preamble

• This presentation was originally presented at the Sep 2019 IEEE Ethernet & IP Tech Day conference in Detroit and subsequently at the Feb 2020 Automotive Ethernet Congress in Munich

• An article is available that covers this presentation at:

 • https://www.allaboutcircuits.com/industry-articles/choosing-the-right-tsn-tools-to-meet-a-bounded-latency/

• The goal of this presentation was to:
 - Simplify the latency equations for the selected TSN shapers so that some quick evaluation of what shaper may be appropriate for a given bounded latency can be made
 - Propose a queue model showing how the various shapers may be used together for automotive
The Need

➢ Ethernet’s high speeds saves wires in Zonal networks
➢ And Zonal networks bring new requirements that (TSN) solves
 ➢ Multiple Domains using the same wire
 ➢ Yet each Domain needs to know its data will get delivered in the needed maximum time – as it no longer has its own dedicated wire!
➢ How to guarantee & plan the maximum bounded latency for each flow is the focus of this presentation
Overview

➢ This presentation focuses on the TSN standards that affect bounded latency of flows through the Automotive Ethernet network

➢ It briefly lists the unique problems each of these Time Sensitive Networking (TSN) standards solves & the relative ‘costs’ of using each tool

➢ Based on these numbers, a per-hop metric is proposed, to help determine which TSN tool should be used and when

➢ This tool usage order, makes the job of “Engineering” the network easier via the step-by-step process described
List of Available TSN Tools for Controlling Latency

<table>
<thead>
<tr>
<th>Standard’s Name:</th>
<th>Also Known As:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Priority</td>
<td>802.1p-1998 / QoS</td>
</tr>
<tr>
<td>Forwarding & Queueing for Time-Sensitive Streams</td>
<td>802.1Qav-2009 / Credit Based Shaper or FQTSS</td>
</tr>
<tr>
<td>Enhancements for Scheduled Traffic</td>
<td>802.1Qbv-2015 / Time Aware Shaper</td>
</tr>
<tr>
<td>Frame Preemption</td>
<td>802.1Qbu-2016 & 802.3br-2016</td>
</tr>
</tbody>
</table>

Note: IEEE 802.1 TSN is constantly doing new work so new tools will become available in products.

Known ones are: Cyclic Queueing & Forwarding, 802.1Qch; & Asynchronous Traffic Shaping, 802.1Qcr
The Shaper Standards:

What Problems the Standards Solve & How They were Envisioned to be Used
Strict Priority Shaper (Strict) – 802.1p-1998

- Priority solves the problem that some frames are more important than others
- It was needed so Network Management could work
- Management frames had to get through in order to be able to fix Network problems – thus their placement in the top Traffic Class
- The Strict hardware selector is defined as: “Frames are selected from the corresponding queue for transmission only if all queues corresponding to numerically higher values of traffic class … are empty at the time of selection.”
Credit Based Shaper (CBS) – 802.1Qav-2009

- CBS solves the problem that long bursts of data are really bad for the Bridges
- It was needed so Reserved frames are not dropped
- It caps the bandwidth a queue can transmit with hardware
- It de-bursts flows in hardware so that optimized software stacks that try to burst can be used (for streams that are not self-shaping)
 - I.e., audio from a USB drive vs. audio from a microphone or radio
 - It allows very small bursts of data to ‘catch-up’ due to momentary interference so the Reserved data rate can be maintained
- In AVB, PCP 2,3 are re-mapped above Mgmt since they can’t use 100% of the wire
Time Aware Shaper (TAS) – 802.1Qbv-2015

➢ TAS delivers the theoretically lowest possible latency for scheduled periodic data
➢ It uses significant bandwidth, so is best used as a last resort
➢ Transmission Gates are added for ALL queues just before the Strict Priority Selector

➢ Following a defined periodic schedule, the gates on the queues are opened or closed for a period of time – allowing critical traffic to pass without interference
➢ ALL queues are time-gated, but really only 1 or 2 queues are actually “Scheduled” and the “non-Scheduled” queues are left open during the remainder of the time
➢ Any TC can be used for “critical” scheduled traffic (TC 2 in the figure)
Preemption – 802.1Qbu-2016 & 802.3br-2016

- Preemption delivers very low latency for a limited set of non-scheduled data
- Preemption gains the most on slow data links (≤ 100 Mb/s)
- Two 802.3 MACs are used, a new one for “preemptable” traffic (pMAC) and the old one for “express” preemption traffic (eMAC)
- Only 1 level of preemption is supported & frames < 127 bytes can’t be preempted
- 802.1 allows connection of each TC queues to either MAC – if more than one queue connects to a MAC, the Strict selector algorithm is assumed
- In the figure, TC 1 is effectively above all the other TC’s since it can preempt them!
The Shaper Standards: Their Metrics
Latency TSN Tool Comparison

<table>
<thead>
<tr>
<th>TSN Tool</th>
<th>Silicon Complexity</th>
<th>Engineering Complexity¹</th>
<th>Wire Efficiency²</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strict Priority</td>
<td>Low</td>
<td>Easy</td>
<td>100%</td>
<td>Needed component, but it is not deterministic by itself</td>
</tr>
<tr>
<td>Credit Based Shaper</td>
<td>Medium</td>
<td>Easy</td>
<td>100%</td>
<td>All CBS queues are deterministic + next highest TC (for Mgmt)</td>
</tr>
<tr>
<td>Time Aware Shaper</td>
<td>Medium</td>
<td>Hard (>1 TC) Medium (1 TC)</td>
<td>- Guard band - Idle opens</td>
<td>All TAS queues are deterministic</td>
</tr>
<tr>
<td>Frame Preemption³</td>
<td>High</td>
<td>Medium but only 1 level deep</td>
<td>- Fragment overhead</td>
<td>Fragmentation can affect determinism on the other flows</td>
</tr>
</tbody>
</table>

1: Engineering Complexity is the expected user difficulty or effort, needed to get proper results
2: Wire Efficiency is how much data can go down the wire – this includes critical data and background data
3: Note: Preemption is the only standard that requires support on both sides of the wire
Per Hop Latency – Credit Based Shaper

➢ Class A \(\approx t_{\text{Interval}} + t_{\text{MaxFrameSize}} \)
 - \(t_{\text{Interval}} \) = observation interval of the Class (125 uSec for AVB – but can be changed)
 - \(t_{\text{MaxFrameSize}} \) = the maximum size of an interfering frame + gaps, etc.
 - This is a good rule-of-thumb equation that results in slightly higher numbers than the equation in 802.1BA-2011 subclause 6.5

➢ Class B \(\approx t_{\text{Interval}} + t_{\text{MaxFrameSize}} + t_{\text{TimeForAllHigherFrames}} \)
 - \(t_{\text{TimeForAllHigherFrames}} \) = the time to transmit all Class A frames (+ gaps, etc.) for the duration of Class B’s \(t_{\text{Interval}} \) (which is typically multiple Class A \(t_{\text{Intervals}} \))

➢ Class C \(\approx t_{\text{Interval}} + t_{\text{MaxFrameSize}} + t_{\text{TimeForAllHigherFrames}} \)
 - Where \(t_{\text{TimeForAllHigherFrames}} \) includes Class A & Class B frames

➢ Etc.
Per Hop Latency – Credit Based Shaper – part 2

- Class A \approx t_{\text{Interval}} + t_{\text{MaxFrameSize}}
 - For a 64 byte frame in a 125uSec observation interval the worst case # is:
 - On a 100BASE link \approx 125 \text{ uSec} + 124 \text{ uSec} = 249 \text{ uSec per hop}
 - On a 1000BASE link \approx 125 \text{ uSec} + 13 \text{ uSec} = 138 \text{ uSec per hop}
 - The observation interval is a significant portion of these latencies
 - Lower worst case latency numbers are possible on 1000BASE links by using shorter observation intervals, but it can’t go below the time of \(t_{\text{MaxFrameSize}} \)
 - But lowering this number reduces latency at the cost of Reservation capacity
 - 1000 vs 100 is either 10x lower latency or 10x the capacity or somewhere in between

Note: The simplified equation on the previous page is useful for calculating the worst case latency range for a fully loaded (i.e., 75% bandwidth allocation) on a Class A link. A scheduling tool needs to use the equation that is in IEEE 802.1BA. Also see: http://www.ieee802.org/1/files/public/docs2011/ba-boiger-per-hop-class-a-wc-latency-0311.pdf
Per Hop Latency – Time Aware Shaper

➢ Store & Forward with Gate Open \(\approx t_{\text{Device}} + t_{\text{FrameSize}} \)
 ➢ \(t_{\text{Device}} \) = the delay through a Store & Forward bridge
 ➢ Good Rule-of-Thumb is 2 x 512 bit times + Cable delay
 ➢ or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE
 ➢ \(t_{\text{FrameSize}} \) = the size of the frame passing through the bridge

➢ For a 64 byte frame the worst case # is:
 ➢ On a 100BASE link \(\approx 10.5 \text{ uSec} + 5.2 \text{ uSec} = 15.7 \text{ uSec per hop} \)
 ➢ On a 1000BASE link \(\approx 1.5 \text{ uSec} + 0.5 \text{ uSec} = 2.0 \text{ uSec per hop} \)
Per Hop Latency – Frame Preemption

➢ Store & Forward w/ Preemption ≈ \(t_{Device} + t_{FrameSize} + t_{Framelet} \)
 ➢ \(t_{Device} \) = the delay through a Store & Forward bridge
 ➢ Good Rule-of-Thumb is 2 x 512 bit times + Cable delay
 ➢ or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE
 ➢ \(t_{FrameSize} \) = the size of the frame passing through the bridge
 ➢ \(t_{Framelet} \) = 127 bytes + overhead, max size interfering frame that can’t be preempted

➢ For a 64 byte frame the worst case # is:
 ➢ On a 100BASE link ≈ 10.5 uSec + 5.2 uSec + 11.8 uSec = 27.5 uSec per hop
 ➢ On a 1000BASE link ≈ 1.5 uSec + 0.5 uSec + 1.2 uSec = 3.2 uSec per hop

Note: Preemption requires support on both sides of the wire
Latency TSN Tool Comparison in Lowest Latency Order

<table>
<thead>
<tr>
<th>TSN Tool</th>
<th>Engineering Complexity</th>
<th>Wire Efficiency</th>
<th>Worst Case Latencies – 1st Order Approximation</th>
<th>Ranking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Aware Shaper</td>
<td>Hard (>1 TC)</td>
<td>- Guard band</td>
<td>15.7 uSec FE Hop 2.0 uSec GE Hop</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Medium (1 TC)</td>
<td>- Idle Opens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frame Preemption</td>
<td>Medium but only 1 level deep</td>
<td>- Fragment overhead</td>
<td>27.4 uSec FE Hop 3.2 uSec GE Hop</td>
<td>3</td>
</tr>
<tr>
<td>Credit Based Shaper</td>
<td>Easy</td>
<td>100%</td>
<td>249 uSec FE Hop 138 uSec GE Hop</td>
<td>1</td>
</tr>
<tr>
<td>Strict Priority</td>
<td>Easy</td>
<td>100%</td>
<td>Can't determine</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Note: FE = 100BASE, GE = 1000BASE

Reasons for the Rankings:

1 = Multiple queues can be used with different observation intervals/latencies
2 & 3 = Assuming only 1 TC is used for very limited, very critical traffic only
2 is more available than 3 in products, supports lower latencies & has a more deterministic effect on the impacted Reserved flows
The Shaper Standards: Which Tool to Use First
Proposed Tool Usage Order

➢ Process the critical flows in smallest to highest allowed latency order
➢ First ensure the total bandwidth through any link is not more than 75% loaded with these flows
 ➢ This # could go a bit higher, but 60% to 75% is a good place to start
➢ Start with the Credit Based Shaper
 ➢ Select an Observation Interval that is as large as possible that delivers the required latency over the path(s) the flow uses
 ➢ If the default 125 uSec Observation Interval is too long, reduce it, but don’t go < 125 uSec on 100BASE links
 ➢ If that doesn’t work, use Time Aware Shaping &/or Preemption as last resorts
 ➢ As these are limited resource that are less wire efficient
 ➢ Subtract any wire efficiency loss as used bandwidth toward the 75% critical flow limit
Proposed Tool Usage Order – part 2

➢ Multiple Credit Based Shaper’s w/increasing Observation Intervals can be used – More than two Classes can be used if needed!
 ➢ Start by loading each Class no more than 20% of the link’s bandwidth
 ➢ Keep in mind that the sum total of ALL Reserved flows, & their frame (IFG, etc.) & scheduler overhead (Qbv & Qbu), must not exceed 75% of any one link’s bandwidth
 ➢ If this happens, try an alternate path for the flow
 ➢ 60% may be a better starting number so that new flows can fit in easier
 ➢ CAN network loading is typically started at 50% so new messages can be added
 ➢ To fix bugs & oversites
 ➢ And to add new features

➢ Network Mgmt must be the highest non-CBS Traffic Class
➢ The remaining “non-Reserved” flows will use the remainder of the unused bandwidth in a Best Effort fashion
Summary
Summary & Proposed Queueing Model

➢ These standards are designed to work together
➢ Multiple different data delivery requirements/latencies can be supported on the same wire
➢ The Credit Based Shaper is not limited to just Audio & Video data & it is not limited to the AVB Profile’s plug-&-play parameters
➢ There is a current limit of 8 Priority Code Points (PCP) that are effectively used to indicate the “type of service” a flow needs
➢ Automotive networks are Engineered, but let the hardware enforce the needed guarantees to make the job much simpler
Disclaimers

➢ This is a really hard concept that has been simplified so that an easy starting point on which shaper to use for a target flow can be made

➢ The listed latency numbers are in the correct range but they are still estimates. For example:
 ➢ A generic bridge delay is used vs. the actual delay in the specific bridge being used
 ➢ All latency numbers use 64 byte data frames. In most cases, larger data frames will impact the latency numbers.
 ➢ 127 byte non-preemptable frames is clear to understand & is a good 1st order approximation
 ➢ Cable delay is mostly ignored – which is approximately 80ns for 15 meters
 ➢ Look at the referenced presentations & others on the same subject in the same areas

➢ As a rule-of-thumb for link speed conversion in a bridge:
 ➢ For MaxFrameSize & Framelet use the egress link speed, for FrameSize use the ingress link speed and for Device use the faster link speed of the two
IEEE 802.1 Automotive AVB and TSN Standards Handout

<table>
<thead>
<tr>
<th>Standards</th>
<th>Transport</th>
<th>Synchronization</th>
<th>Stream Reservation</th>
<th>Quality of Service</th>
<th>Redundancy</th>
<th>Security</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVB</td>
<td>1722-2011</td>
<td>802.1AS-2011</td>
<td>802.1Qat-2010 SRP (now Q clause 35)</td>
<td>802.1Qav-2009 Credit Based Shaper (now Q clause 34)</td>
<td>-</td>
<td>802.1X-2010 802.1Xbx-2014 802.1Xck-2018 Network Access</td>
</tr>
<tr>
<td>802.1BA-2011</td>
<td>The AVB Profile</td>
<td>gPTP</td>
<td>802.1AS-2011 Redundant gPTP</td>
<td>802.1Qcc-2018 Enhanced SRP 802.1Qca-2015 Path Control & Reservation</td>
<td>802.1CB-2017 Frame Replication & Elimination 802.1AS-2020 Redundant gPTP</td>
<td>802.1AEcg-2017 (end-to-end) MACSec</td>
</tr>
<tr>
<td>1722-2016 Media Transport Protocol</td>
<td>802.1AS-2020 Redundant gPTP</td>
<td>802.1Qcc-2018 Enhanced SRP</td>
<td>802.1Qb-2015 Time Aware Shaper 802.1Qbu-2016 & 802.3br-2016 Preemption 802.1Qch-2017 Cyclic Queue Forwarding 802.1Qcr Asynchronous Shaping</td>
<td>802.1CB-2017 Frame Replication & Elimination 802.1AS-2020 Redundant gPTP</td>
<td>802.1Qci-2017 Policing 802.1AEcg-2017 (end-to-end) MACSec</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- Standards without an appended year are not completed yet.
- Updated 1-2020

TSN

- 1722-2016 Media Transport Protocol
- Adds CAN, FlexRay, LIN, + more Audio/Video Transports
- 802.1AS-2011 gPTP
- 802.1AS-2020 Redundant gPTP
- 802.1AS-2011 gPTP
- 802.1Qat-2010 SRP (now Q clause 35)
- 802.1Qav-2009 Credit Based Shaper (now Q clause 34)
- 802.1Qb-2015 Time Aware Shaper
- 802.1Qbu-2016 & 802.3br-2016 Preemption
- 802.1Qch-2017 Cyclic Queue Forwarding
- 802.1Qcr Asynchronous Shaping
- 802.1CB-2017 Frame Replication & Elimination
- 802.1AS-2020 Redundant gPTP
- 802.1X-2010 Network Access
- 802.1Xbx-2014 Network Access
- 802.1Xck-2018 Network Access
- 802.1AEcg-2017 (end-to-end) MACSec
IEEE 802.3 Automotive Ethernet PHY Standards Handout

<table>
<thead>
<tr>
<th>MAC Interface</th>
<th>10 Mbit/s</th>
<th>100 Mbit/s</th>
<th>1000 Mbit/s</th>
<th>2500 Mbit/s</th>
<th>10 Gbit/s</th>
<th>Next</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC Interface</td>
<td>SNI, xMII/SGMII OC-SGMII</td>
<td>xMII/SGMII OC-SGMII</td>
<td>xGMII/SGMII OC-SGMII 1000BASE-X</td>
<td>OC-SGMII 2500BASE-X</td>
<td>USXGMII XFI</td>
<td>?</td>
</tr>
<tr>
<td>Media Interface</td>
<td>Single Twisted Pair</td>
<td>Digital/SERDES</td>
<td>Digital/SERDES</td>
<td>Digital/SERDES</td>
<td>Digital/SERDES</td>
<td>?</td>
</tr>
<tr>
<td>Media Interface Standards</td>
<td>802.3cg-2019 10BASE-T1S 15m Point to Point 25m Multi-Drop 10BASE-T1L 1000m Point to Point</td>
<td>802.3bw-2015 100BASE-T1 15m Point to Point</td>
<td>802.3bp-2016 1000BASE-T1 15m Point to Point</td>
<td>802.3ch 2500BASE-T1 15m Point to Point</td>
<td>802.3ch 10GBASE-T1 15m Point to Point</td>
<td>?</td>
</tr>
</tbody>
</table>

Media Interface (PHY) Standards without an appended year are not completed yet. Updated 1-2020