Choosing the Right TSN Tools to meet a Bounded Latency

Don Pannell

Fellow Automotive Ethernet Networking, NXP

IEEE 802.1 TSN Interim Sep 2020

A

SECURE CONNECTIONS FOR A SMARTER WORLD

Preamble

- This presentations was originally presented at the Sep 2019 IEEE Ethernet & IP Tech Day conference in Detroit and subsequently at the Feb 2020 Automotive Ethernet Congress in Munich
- An article is available that covers this presentation at:
- <u>https://www.allaboutcircuits.com/industry-articles/choosing-the-right-tsn-tools-to-meet-a-bounded-latency/</u>
- The goal of this presentation was to:
 - Simplify the latency equations for the selected TSN shapers so that some quick evaluation of what shaper may be appropriate for a given bounded latency can be made
 - Propose a queue model showing how the various shapers may be used together for automotive

The Need

- Ethernet's high speeds saves wires in Zonal networks
- >And Zonal networks bring new requirements that (TSN) solves

>Multiple Domains using the same wire

- Yet each Domain needs to know its data will get delivered in the needed maximum time – as it no longer has its own dedicated wire!
- How to guarantee & plan the maximum bounded latency for each flow is the focus of this presentation

Overview

- This presentation focuses on the TSN standards that affect bounded latency of flows through the Automotive Ethernet network
- It briefly lists the unique problems each of these Time Sensitive Networking (TSN) standards solves & the relative 'costs' of using each tool
- >Based on these numbers, a per-hop metric is proposed, to help determine which TSN tool should be used and when
- This tool usage order, makes the job of "Engineering" the network easier via the step-by-step process described

List of Available TSN Tools for Controlling Latency

Standard's Name:	Also Known As:
Strict Priority	802.1p-1998 / QoS
Forwarding & Queueing for Time- Sensitive Streams	802.1Qav-2009 / Credit Based Shaper or FQTSS
Enhancements for Scheduled Traffic	802.1Qbv-2015 / Time Aware Shaper
Frame Preemption	802.1Qbu-2016 & 802.3br-2016

Note: IEEE 802.1 TSN is constantly doing new work so new tools will become available in products. Known ones are: Cyclic Queueing & Forwarding, 802.1Qch; & Asynchronous Traffic Shaping, 802.1Qcr

The Shaper Standards:

What Problems the Standards Solve & How They were Envisioned to be Used

Strict Priority Shaper (Strict) – 802.1p-1998

- Priority solves the problem that some frames are more important than others
- It was needed so Network
 Management could work

- Management frames <u>had</u> to get through in order to be able to fix Network problems – thus their placement in the top Traffic Class
- The Strict hardware selector is defined as: "Frames are selected from the corresponding queue for transmission only if all queues corresponding to numerically higher values of traffic class ... are empty at the time of selection."

Credit Based Shaper (CBS) – 802.1Qav-2009

- CBS solves the problem that long bursts of data are really bad for the Bridges
- It was needed so Reserved frames are not dropped

- > It caps the bandwidth a queue can transmit with hardware
- It de-bursts flows in hardware so that optimized software stacks that try to burst can be used (for streams that are not self-shaping)
 - >I.e., audio from a USB drive vs. audio from a microphone or radio
 - It allows very small bursts of data to 'catch-up' due to momentary interference so the Reserved data rate can be maintained
 - >In AVB, PCP 2,3 are re-mapped above Mgmt since they can't use 100% of the wire

Time Aware Shaper (TAS) – 802.1Qbv-2015

- TAS delivers the theoretically lowest possible latency for scheduled periodic data
- It uses significant bandwidth, so is best used as a last resort

- Transmission Gates are added for ALL queues just before the Strict Priority Selector
 - Following a defined periodic schedule, the gates on the queues are opened or closed for a period of time – allowing critical traffic to pass without interference
 - >ALL queues are time-gated, but really only 1 or 2 queues are actually "Scheduled" and the "non-Scheduled" queues are left open during the remainder of the time
 - >Any TC can be used for "critical" scheduled traffic (TC 2 in the figure)

Preemption - 802.1Qbu-2016 & 802.3br-2016

- Preemption delivers very low latency for a limited set of non-scheduled data
- Preemption gains the most on slow data links (< 100 Mb/s)</p>

- >Two 802.3 MACs are used, a new one for "preemptable" traffic (pMAC) and the old one for "express" preempting traffic (eMAC)
 - >Only 1 level of preemption is supported & frames < 127 bytes can't be preempted
 - >802.1 allows connection of each TC queues to either MAC if more than one queue connects to a MAC, the Strict selector algorithm is assumed
 - >In the figure, TC 1 is effectively above all the other TC's since it can preempt them!

Latency TSN Tool Comparison

TSN Tool	Silicon Complexity	Engineering Complexity ¹	Wire Efficiency ²	Comments	
Strict Priority	Low	Easy	100%	Needed component, but it is not deterministic by itself	
Credit Based Shaper	Medium	Easy	100%	All CBS queues are deterministic + next highest TC (for Mgmt)	
Time Aware Shaper	Medium	Hard (>1 TC) Medium (1 TC)	- Guard band - Idle opens	All TAS queues are deterministic	
Frame Preemption ³	High	Medium but only 1 level deep	 Fragment overhead 	Fragmentation can affect determinism on the other flows	

Engineering Complexity is the expected user difficulty or effort, needed to get proper results
 Wire Efficiency is how much data can go down the wire – this includes critical data and background data
 Note: Preemption is the only standard that requires support on both sides of the wire

Per Hop Latency – Credit Based Shaper

>Class A \approx tInterval + MaxFrameSize

- $>_t$ Interval = observation interval of the Class (125 uSec for AVB but can be changed)
- $>_t$ MaxFrameSize = the maximum size of an interfering frame + gaps, etc.
- This is a good rule-of-thumb equation that results in slightly higher numbers than the equation in 802.1BA-2011 subclause 6.5
- >Class B \approx tInterval + MaxFrameSize + TimeForAllHigherFrames
 - $>_t$ TimeForAllHigherFrames = the time to transmit all Class A frames (+ gaps, etc.) for the duration of Class B's the time to transmit all values of the transmit all Class A frames (+ gaps, etc.) for
- >Class C \approx tInterval + tMaxFrameSize + tTimeForAllHigherFrames
 - >Where tTimeForAllHigherFrames includes Class A & Class B frames
- ≻Etc.

Per Hop Latency – Credit Based Shaper – part 2

>Class A \approx tInterval + MaxFrameSize

- >For a 64 byte frame in a 125uSec observation interval the worst case # is:
- >On a 100BASE link \approx 125 uSec + 124 uSec = 249 uSec per hop
- >On a 1000BASE link \approx 125 uSec + 13 uSec = 138 uSec per hop

>The observation interval is a significant portion of these latencies

- Lower worst case latency numbers are possible on 1000BASE links by using shorter observation intervals, but it can't go below the time of tMaxFrameSize
- >But lowering this number reduces latency at the cost of Reservation capacity
 - >1000 vs 100 is either 10x lower latency or 10x the capacity or somewhere in between
- Note: The simplified equation on the previous page is useful for calculating the worst case latency range for a fully loaded (i.e., 75% bandwidth allocation) on a Class A link. A scheduling tool needs to use the equation that is in IEEE 802.1BA. Also see: http://www.ieee802.org/1/files/public/docs2011/ba-boiger-per-hop-class-a-wc-latency-0311.pdf

Per Hop Latency – Time Aware Shaper

>Store & Forward with Gate Open $\approx {}_{t}$ Device + ${}_{t}$ FrameSize

- $>_t$ Device = the delay through a Store & Forward bridge
 - Good Rule-of-Thumb is 2 x 512 bit times + Cable delay

> or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE

- $>_t$ FrameSize = the size of the frame passing through the bridge
 - For more information see <u>http://www.ieee802.org/1/files/public/docs2011/new-pannell-latency-options-0311-v1.pdf</u>
- >For a 64 byte frame the worst case # is:
 - >On a 100BASE link \approx 10.5 uSec + 5.2 uSec = 15.7 uSec per hop
 - >On a 1000BASE link \approx 1.5 uSec + 0.5 uSec = 2.0 uSec per hop

Per Hop Latency – Frame Preemption

>Store & Forward w/ Preemption $\approx {}_{t}$ Device + ${}_{t}$ FrameSize + ${}_{t}$ Framelet

- $>_t$ Device = the delay through a Store & Forward bridge
 - Good Rule-of-Thumb is 2 x 512 bit times + Cable delay

> or 10.5 uSec for 100BASE & 1.5 uSec for 1GBASE

- $>_t$ FrameSize = the size of the frame passing through the bridge
- $>_t$ Framelet = 127 bytes + overhead, max size interfering frame that can't be preempted
 - For more information see <u>http://www.ieee802.org/1/files/public/docs2011/new-avb-pannell-latency-options-1111-v2.pdf</u>
- >For a 64 byte frame the worst case # is:
 - >On a 100BASE link \approx 10.5 uSec + 5.2 uSec + 11.8 uSec = 27.5 uSec per hop
 - >On a 1000BASE link \approx 1.5 uSec + 0.5 uSec + 1.2 uSec = 3.2 uSec per hop

Note: Preemption requires support on both sides of the wire

Latency TSN Tool Comparison in Lowest Latency Order

TSN Tool	Engineering Complexity	Wire Efficiency	Worst Case Latencies – 1 st Order Approximation	Ranking
Time Aware Shaper	Hard (>1 TC) Medium (1 TC)	- Guard band - Idle Opens	15.7 uSec FE Hop 2.0 uSec GE Hop	2
Frame Preemption	Medium but only 1 level deep	 Fragment overhead 	27.4 uSec FE Hop 3.2 uSec GE Hop	3
Credit Based Shaper	Easy	100%	249 uSec FE Hop 138 uSec GE Hop	1
Strict Priority	Easy	100%	Can't determine	N/A

Note: FE = 100BASE, GE = 1000BASE

Reasons for the Rankings:

- 1 = Multiple queues can be used with different observation intervals/latencies
- 2 & 3 = Assuming only 1 TC is used for very limited, very critical traffic only

2 is more available than 3 in products, supports lower latencies & has a more deterministic effect on the impacted Reserved flows

The Shaper Standards: Which Tool to Use First

Proposed Tool Usage Order

- > Process the critical flows in smallest to highest allowed latency order
- First ensure the total bandwidth through any link is not more than 75% loaded with these flows
 - >This # could go a bit higher, but 60% to 75% is a good place to start
- >Start with the Credit Based Shaper
 - Select an Observation Interval that is as large as possible that delivers the required latency over the path(s) the flow uses
 - If the default 125 uSec Observation Interval is too long, reduce it, but don't go < 125 uSec on 100BASE links
 - >If that doesn't work, use Time Aware Shaping &/or Preemption as last resorts
 - >As these are limited resource that are less wire efficient
 - > Subtract any wire efficiency loss as used bandwidth toward the 75% critical flow limit

Proposed Tool Usage Order – part 2

- Multiple Credit Based Shaper's w/increasing Observation Intervals can be used – More than two Classes can be used if needed!
 - >Start by loading each Class no more than 20% of the link's bandwidth
 - Keep in mind that the sum total of ALL Reserved flows, & their frame (IFG, etc.) & scheduler overhead (Qbv & Qbu), must not exceed 75% of any one link's bandwidth
 - > If this happens, try an alternate path for the flow
 - >60% may be a better starting number so that new flows can fit in easier
 - > CAN network loading is typically started at 50% so new messages can be added
 - > To fix bugs & oversites
 - And to add new features
- >Network Mgmt must be the highest non-CBS Traffic Class
- The remaining "non-Reserved" flows will use the remainder of the unused bandwidth in a Best Effort fashion

Summary & Proposed Queueing Model

- These standards are designed to work together
- Multiple different data delivery requirements/latencies can be supported on the same wire

The Credit Based Shaper is not limited to just Audio & Video data & it is not limited to the AVB Profile's plug-&-play parameters

3

2

- There is a current limit of 8 Priority Code Points (PCP) that are effectively used to indicate the "type of service" a flow needs
- >Automotive networks are Engineered, but let the hardware enforce the needed guarantees to make the job much simpler

SECURE CONNECTIONS FOR A SMARTER WORLD

www.nxp.com

Disclaimers

- This is a really hard concept that has been simplified so that an easy starting point on which shaper to use for a target flow can be made
- The listed latency numbers are in the correct range but they are still estimates. For example:
 - >A generic bridge delay is used vs. the actual delay in the specific bridge being used
 - All latency numbers use 64 byte data frames. In most cases, larger data frames will impact the latency numbers.
 - >127 byte non-preemptable frames is clear to understand & is a good 1st order approximation
 - >Cable delay is mostly ignored which is approximately 80ns for 15 meters
 - >Look at the referenced presentations & others on the same subject in the same areas
- >As a rule-of-thumb for link speed conversion in a bridge:
 - For tMaxFrameSize & Framelet use the egress link speed, for tFrameSize use the ingress link speed and for Device use the faster link speed of the two

IEEE 802.1 Automotive AVB and TSN Standards Handout

IEEE 802.3 Automotive Ethernet PHY Standards Handout

Media Interface (PHY) Standards without an appended year are not completed yet.

COMPANY PUBLIC