802.1ABdh — Multi-Frame LLDP

Overview and Questions

Version O

802.1ABdh Motivation

LLDP currently limited to conveying information that can be
contained in a single frame.
— InfoSource sends a single frame containing a LLDPDU with all TLVs.

— InfoTarget records received TLVs in a “remote MIB” corresponding to the
transmitter.

* InfoTarget deletes any information received in a TLV in a previous LLDPDU if
that TLV is not present in the most recent LLDPDU.

Amendment increases the limit on the information that can be
conveyed by allowing multiple frames containing TLVs.

— TLVs themselves must still fit within a single frame.

— Total amount of information still limited (will discuss later).

Based on proposal by Paul Bottorff and Paul Congdon
— http://www.ieee802.org/1/files/public/docs2020/dh-bottorff-xlldp-0320-v03.pdf

http://www.ieee802.org/1/files/public/docs2020/dh-bottorff-xlldp-0320-v03.pdf

Basic (proposed) mechanism

InfoSource sends a normal LLDPDU containing a new TLV:

— “Manifest” TLV contains a description of one or more extension PDUs, each of
which can contain one or more TLVs.

* Assuming for now that the Manifest contains a complete list of all X-PDUs, not just those that
have changed.

— If InfoTarget does not implement multi-frame it will record the Manifest TLV
but take no further action (normal behavior for an unrecognized TLV).

— If InfoTarget implements multi-frame it will record the Manifest TLV and begin
requesting extension PDUs from InfoSource.

InfoTarget sends a request for an extension PDU (XREQ-PDU)
to the InfoSource (unicast).

— Only a single XREQ-PDU can be outstanding at any time, but a single XREQ-
PDU can request extension PDUs.

InfoSource sends the requested extension PDUs (X-PDU) to
the InfoTarget (unicast).

Interoperability with “legacy” LLDP
implementations

Legacy implementations, acting as an InfoSource, send a normal LLDPDU
to InfoTarget(s).
— Sent multicast, since there may be multiple connected InfoTargets.

— Each InfoTarget receives and records normal LLDPDU, whether or not the
InfoTarget implements multi-frame.

Multi-frame implementations, acting as an InfoSource, send a normal
LLDPDU containing a Manifest TLV to InfoTarget(s).
— InfoSource does not need to know if InfoTarget is a legacy implementation.

— If InfoTarget is a legacy implementation it will record the Manifest TLV but take no
further action.

Legacy implementations never receive an XREQ-PDU because they do not
send an LLDPDU containing a Manifest TLV.

Legacy implementations never receive an X-PDU because they do not send
XREQ-PDUs.

If, perchance, a legacy implementation does receive an XREQ-PDU or X-
PDU, want to make sure it is discarded.

ldentifying XLLDP Frames

Current proposal suggests using a new Ethertype (with sub-type and
revision number) to identify frames containing XREQ-PDU and X-PDU.
— Not clear this is necessary.

Current LLDP specification requires discarding any LLDPDU that does not
have a Chassis ID TLV as the first TLV.

Both the XREQ-PDU and X-PDU contain a new TLV (XREQ-TLV and XID-TLV
respectively). Putting this as the first TLV would be sufficient to identify
the PDU and ensure that it is discarded by legacy implementations.

— Allows using the current LLDP Ethertype for XREQ-PDU and X-PDU.

— Legacy implementations would increment error counters when discard an XREQ-
PDU or X-PDU, but that is OK and even desirable since a legacy implementation
should never receive them when the protocol is properly implemented.

Is there some other reason for using a new Ethertype that | am missing?

Information size limit

In legacy implementations the maximum amount of information that can
be conveyed by LLDP is limited by the number and size of TLVs that can be
included in a single frame.

— Depends on the media connecting the LLDP systems (which could be a virtual
connection).

— May be further constrained by the application environment (e.g. TSN).
— How does the implementation know the MTU?

In a multi-frame implementation the maximum amount of information is
limited by the number of X-PDU identifiers in that can fit in a Manifest TLV
(and in a single frame).

— Maximum size of a TLV information string (511 octets) limits the number of X-PDU

identifiers to 84. This seems like plenty, but it may be further constrained by other
considerations:

* Frame size limitations (as above).
* Other TLVs that need to be in the “normal” LLDPDU to ensure receipt by legacy
implementations.
Could eliminate the information size limit by allowing X-PDUs to contain a
Manifest TLV (that identifies additional X-PDUs).

Database updates

* Legacy implementations always do full database updates.
— InfoSource sends single LLDPDU that includes all TLVs (full database).

— InfoTarget validates all TLVs, and then sends all together to update the
remote MIB (atomic operation).

— If an LLDPDU contains a TLV that is not valid, or does not contain a TLV
that was present in a previous LLDPDU, that TLV information is deleted
from the remote MIB.

* For multi-frame, want to be able to do incremental updates.

— InfoSource sends normal LLDPDU with a Manifest TLV containing
descriptors of all X-PDUs, even those with TLVs that have not changed.

— InfoTarget sends XREQ-PDU for any X-PDUs whose descriptors in the most
recently received Manifest are different from X-PDUs already received.

* The remote MIB is updated with TLV information received in changed X-PDUs when all
X-PDUs in the most recently received Manifest have been received, so update is still
atomic.

* |If going to retain the ability to delete a TLV from the remote MIB, then need a way to
distinguish between a TLV that is no longer relevant versus a TLV that has not changed.

1.

Deleting TLV info from remote MIB

Implicit delete

When InfoTarget receives a Manifest TLV and the subsequent X-PDUs, the
InfoTarget retains a list of the TLVs contained in each X-PDU.

InfoSource sends a new Manifest TLV containing a modified X-PDU descriptor for
the X-PDU that no longer contains the TLV to be deleted.

InfoTarget requests and receives the modified X-PDU, and by comparing with the
retained list of expected TLVs, the InfoTarget can identify the TLV to be deleted.

Explicit delete

The InfoSource sends a new Manifest TLV containing a modified X-PDU descriptor
for the X-PDU containing the TLV to be deleted.

Upon request from the InfoTarget, the InfoSource sends the modified X-PDU that
includes an invalid TLV for the TLV to be deleted (e.g. infostring length set to zero).

InfoTarget detects the invalid TLV and deletes it from the remote MIB.

InfoSource needs to include the invalid TLV in each new revision of the X-PDU
because it never gets a confirmation that the InfoTarget received the X-PDU.

Re-initialize entire remote MIB

The InfoSource increments the revision number of all X-PDUs, regardless of
whether there is any change to the included TLVs, and sends a new Manifest TLV.

InfoTarget sends requests for all X-PDUs.

When InfoTarget detects that it has new revisions of every X-PDU it does a
complete update of the remote MIB, including deleting any old information from a
TLV no longer present in any X-PDU.

Fixed mapping of TLVs to X-PDUs?

* Presumably it would be desirable to impose as few constraints
as possible on how the InfoSource maps TLVs to X-PDUs.

— ldeally the InfoSource would be free to change the mapping of TLVs to
X-PDUs over time.

* Especially if the length of data contained in a TLV can vary due to changes in
operating conditions.

* | think all that is necessary for the InfoSource to move a TLV
from one X-PDU to another is to send a new Manifest with an
updated X-PDU descriptor for both TLVs.

— Am | missing something here?

Thank You

	802.1ABdh – Multi-Frame LLDP��Overview and Questions�Version 0��
	802.1ABdh Motivation
	Basic (proposed) mechanism
	Interoperability with “legacy” LLDP implementations
	Identifying XLLDP Frames
	Information size limit
	Database updates
	Deleting TLV info from remote MIB
	Fixed mapping of TLVs to X-PDUs?
	Thank You

