Simplified EDE VLAN Management

Don Fedyk (dfedyk@labn.net)
Forward

• This presentation is for a discussion on detailed config.
• It may contain errors/omission and should be consider a work in progress.
• An updated version the presentation will be posted after discussion to correct it but it will remain a work in progress.
Ethernet Data Encryption (EDE) devices

• EDE come in several types
• EDE-M VLAN unaware – handled by existing YANG models
• EDE-CS – Provider Bridge C-VLAN & S-VLAN like Components.
• EDE-CC – Two C-VLAN like components
• EDE-SS – Two S-VLAN like components
Ethernet Data Encryption

A model of configuring MACsec Shim on a bridge com

802.1AE-2018 Figure 15-2

EDE-M The VLAN unaware device

Nothing to do here!
Revisiting MACsec Config for EDEs

The EDE is C and S-VLAN aware. MACsec remains a shim but the combinations resulting in Tagging of the data on the wire.

YANG models all these () ports.
Last Meeting

• Discussed a prototype provision of what was needed from the Bridge and Provider YANG

• Got hung up on the Mapping of components – things mostly work for an EDE-CS but there gap extending to EDE-CC and EDE-CS

• As coded the C-Components and the S-Components have behavioral characteristics and you can’t just interchange them

• Plus it seemed the mapping of C-VID to S-VID was limited

See dk-fedyk-dot1aedk-privacy-config-0317-v00
The simplest model

Last time Approach was

• Provision components that were needed for the Bridge and Provider Bridge model

This time start from basics:

• Only allow functions that are needed
• Note this is not a replacement. The goal of this exercise is to reuse existing components and build a structure that satisfies all the EDE models.
• Then this delta could be added back to the Bridge and Provider bridge models
 Spoiler the delta is small!
EDEs Simple Bridge Relays – What's Needed for Generic Tagging

MACsec and MAC Privacy can exist on an interface typically where shown but not limited
EDEs Simple Bridge Relays – What's Needed for Generic Tagging

- Inner Relay
- Outer Relay
- Control VID - RSTP
- Other VIDs
- Inner Edge Port (IEP)
- Outer EP (OEP)
- Inner NP (INP)
- Outer Network Port (ONP)
- A VLAN
- Priority Mapping

1. Local Inner-TAG
 - Internal Inner VID
 - External Inner VID

2. Internal Inner VID
 - Internal Outer VIDs
 - One or more Inner VIDs: 1 Outer VID

3. [Outer VLAN Translations]
 - Internal Outer VID
 - External Outer VID

4/7/2020
EDEs Simple Bridge Relays – What's Needed for Generic Priority

One or more Inner VIDs: 1 Outer VID
How many VID values in a single Tagged VLAN?

a) No more than 4094?
b) Varies - Statically Configured
c) Varies - Dynamically Control Plan Learned
d) All of the above

If you picked all of the above then you are right!

802.1 Bridges
Organized by Bridge relays
Bridging uses FDB Filtering
• Forward all but ...
• Filter all but ...
• VID -> FID
• FID->Control Plane (VLAN)

Other groups models
Often Organized by Interfaces/Ports

On Interfaces means many times we need mappings:
• All VIDs
• List of VIDs
• Ranges

Not Equivalent!
VID Mappings

VID bundling - grouping

<table>
<thead>
<tr>
<th>VID Mapping</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VID → FID</td>
<td>VID – Control plane or Static Config</td>
</tr>
<tr>
<td>Inner VID → Outer VID</td>
<td>Outer VID -> Control Plane/Config</td>
</tr>
<tr>
<td></td>
<td>Needs a Shared VLAN map to be equivalent</td>
</tr>
<tr>
<td></td>
<td>And VID Filtering? It can be Implicit</td>
</tr>
</tbody>
</table>

This is the original VLAN Bridge model.
This mapping only requires a single VLAN tag but works for the outer VLAN tag.

This is very close but only works for 2 tags.
IETF and many Vendors use Tagged config model.
Breaking it down – What do we need?

Bridge Inner Edge Port

- Tag Type (component-type c-tag s-tag)
 - VID Translator / Interface
 - Untagged -> Primary VID (PVID)
 - Priority Tagged -> PVID
 - VID -> to other VID one-to-one Mapping (Ingress and egress)
 - Ease of input
- Priority MAP / Interface
 - Input 8 Priority Code Points (PCPs) to 8 PCPs
 - Or Input 16 (8PCPs+2DE) to 16

Inner VID to Outer VID
1 Inner VID to one or more Outer VID

Assume one Inner Bridge for now
Multiple Bridges ~ Virtual Interfaces

4/7/2020
Interface VID Translator - Existing

list vid-translations {
 key "local-vid";
 description
 leaf local-vid {
 type dot1qtypes:vlanid;
 description
 "The Local VID after translation received at the ISS or
 EISS.";
 reference
 "12.10.1.8 of IEEE Std 802.1Q-2018
 6.9 of IEEE Std 802.1Q-2018";
 }
 leaf relay-vid {
 type dot1qtypes:vlanid;
 description
 "The Relay VID received before translation received at ISS
 or EISS.";
 reference
 "12.10.1.8 of IEEE Std 802.1Q-2018
 6.9 of IEEE Std 802.1Q-2018";
 }
}

++rw vid-translations* [local-vid]
 |--rw local-vid dot1qtypes:vlanid
 |--rw relay-vid dot1qtypes:vlanid
 ++rw egress-vid-translations* [relay-vid]
 |--rw relay-vid dot1qtypes:vlanid
 |--rw local-vid dot1qtypes:vlanid

Question can we should we use vid-ranges to ease input?

Currently VID ranges is a string – Values and correlation YANG cannot ensure 1:1 but ranges much more compact – Multiple mappings per line. Much better for input. Currently YANG only ensure 1:1 mapping, it will only allow X to Y where X is guaranteed to be unique but Y is not checked. String would mean any mapping. The point is both need backend handling and YANG checking even on value is minimal
Bridge Priority Map - Existing

<table>
<thead>
<tr>
<th>Port-type</th>
<th>PVID</th>
<th>Priority VID</th>
<th>PCP</th>
<th>DE</th>
<th>Priority</th>
</tr>
</thead>
</table>

Assume that we have a VLAN tag with PCP for the common case.
Focus on Marking in and out PCP as primary case (the other modes are still there)

```plaintext
+-rw pcp-selection?
  |  dot1qtypes:pcp-selection-type
  |  +-rw pcp-decoding-table
  |  |  +-rw pcp-decoding-map* [pcp]
  |  |  |  +-rw pcp    pcp-selection-type
  |  |  |  +-rw priority-map* [priority-code-point]
  |  |  |  |  +-rw priority-code-point  priority-type
  |  |  |  |  +-rw priority?  priority-type
  |  |  |  |  +-rw drop-eligible? boolean
  |  |  +-rw pcp-encoding-table
  |  |  |  +-rw pcp-encoding-map* [pcp]
  |  |  |  |  +-rw pcp    pcp-selection-type
  |  |  |  |  +-rw priority-map* [priority-dei]
  |  |  |  |  |  +-rw priority?  priority-type
  |  |  |  |  |  +-rw dei    boolean
  |  |  |  |  |  +-rw priority-code-point? priority-type
```

PCP mapping In

PCP mapping out
Inner VID to Outer VID

• All to One (ranges)
• Set (ranges, lists)
• Individual
• Possible - Explicitly Block some VIDs

Use Explicit Model only forward specified VIDs
Inner VID to Outer VID

list outer-vid-inner-vid{
 key "outer-vid";
 description
 leaf outer-vid {
 type dot1q-types:vlanid;
 description
 "Outer VLAN identifier.";
 reference
 "12.13.2.1 of IEEE Std 802.1Q-2018";
 }
 leaf inner-vid {
 type dot1q-types:vid-range-type;
 description
 "Inner VLAN identifiers associated with this bridge port.";
 reference
 "12.13.2.1 of IEEE Std 802.1Q-2018";
 }
}

---rw outer-vid-inner-vid* [outer-vid]
 +--rw outer-vid dot1qtypes:vlanid
 +--rw inner-vid? dot1qtypes:vid-range-type

This is variation of the CVID registration Table
But it provides 1 Inner TAG to Multiple Outer TAGs
And it is very compact. (Using ranges).

In fact where no VID translation is needed this becomes the essential VID configuration.
Notes

• There are multiple controls that enable VID forwarding

• Mapping the Inner relay VID to a outer relay VID requires the equivalent of a VID to FID mapping otherwise a bridge is likely to filter the VID.

• The current C-VID registration table allows multiple C-VIDs mapped to an S-VID but does not allow Multiple CVIDs mapped to multiple S-VIDs
Breaking it down – What do we need?

Bridge Outer Network Port
• Tag Type
 • VID Translator / Interface
 • Untagged -> PVID
 • Priority Tagged → PVID
 • VID tagged -> to other VIDs
 • Priority MAP / Interface
 • Input 8 PCPs to 8 PCPs
 • Or Input 16 (8PCP+2DE) to 16

Assume one Bridge for now
Multiple Bridges ~ Virtual Interfaces

Already covered
Breaking it down – What do we need?

Outer Edge Port or Inner Network Port

- Priority MAP
 - Input 8 PCPs to 8 PCPs
 - Or Input 16 (8PCP+2DE) to 16

Outer Edge Port Shims

- MACsec SecY
- Port Access Entity
- MAC Privacy PrY

Already covered

This falls out if we get the above right
Now what does it look like from a VID Configuration perspective

Inner Relay

• Determine TPID type (allows C-VID or SIV-D)

IF (VID Translation required)

• Incoming MAP External local VID to relay VID
 • This feature is optional if local VID == Relay VID in the VLAN
 • It is useful when the VLAN used for bridged has a different VLAN ID (typically because the admin authority of the VLAN ID is not the same.

THEN

• Incoming MAP inner relay VID to one or more outer relay VIDs
Now what does it look like from a VID perspective

Outer Relay

• Determine TPID type

IF (VID Translation required)

• Outgoing MAP Outer relay VID to local Interface VID
 • This feature is optional if local VID equals Relay VID in the VLAN
 • It is useful when the VLAN used for bridged has a different VLAN ID (typically because the admin authority of the VLAN ID is not the same all along the path.)
How to add this back to the Bridge Model

• Existing Bridge model with a few new identity's and the new Inner to Outer VLAN Map

• One option Add new component types
 • New inner-vlan-component with TPID-Config
 • New outer-vlan-component with TPID-Config

• Add a Inner-VID to Outer-VID Map
 • Allows all combinations.
 • Question Does this need an untagged flag?
Questions

• The configuration maps all VLANs in a bridge through the MACsec [MAC Privacy] on the bridge leg.

• For traffic that is not to be MACsec[MAC Privacy] How do we specify controls?
 • Multiple inner bridge relays can filter VIDs – is anything else required?
RPC Data Reply 46 for session 2:

rpc-reply {
 data {
 bridges {
 bridge EDE-CC1 {
 name EDE-CC1
 address 11-11-11-11-11-11
 bridge-type dot1q:ede-double-tag-bridge
 component inner-relay1 {
 name inner-relay1
 type dot1q:inner-relay-component
 bridge-vlan {
 tag-type dot1q-types:c-vlan
 vlan 1 {
 vid 1
 name ivid1
 }
 }
 }
 }
 component outer-relay1 {
 name outer-relay1
 type dot1q:outer-relay-component
 bridge-vlan {
 tag-type dot1q-types:c-vlan
 vlan 1 {
 vid 1
 name ovid1
 }
 }
 }
 }
 }
}

interfaces {
 interface iep1 {
 name iep1
 type ianaift:bridge
 bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:inner-edge-port
 }
 }
 interface inp1 {
 name inp1
 type ianaift:bridge
 bridge-port {
 bridge-name EDE-CC1
 component-name outer-relay1
 port-type dot1q:inner-network-port
 }
 }
 interface inp2 {
 name inp2
 type ianaift:bridge
 bridge-port {
 bridge-name EDE-CC1
 component-name outer-relay2
 port-type dot1q:inner-network-port
 }
 }
 interface inp3 {
 name inp3
 type ianaift:bridge
 bridge-port {
 bridge-name EDE-CC1
 component-name outer-relay3
 port-type dot1q:inner-network-port
 }
 }
}
interface oep1 {
 name oep1
 type ianaift:bridge
 sbc
 controlled-port-number 1
generation {
 max-transmit-channels 4
 max-transmit-keys 4
 protect-frames false
 always-include-sci false
 use-es false
 use-scb false
 }
 controlled-interface {
 uncontrolled-interface {
 admin-point-to-point-mac auto
 }
 }
pae {
 pae-system 1
 port-type real-port
}
bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:outer-edge-port
 outer-vid 2 inner-vid 2
 outer-vid 20 inner-vid 7,1
}
interface oep2 {
 name oep2
 type ianaift:bridge
 sbc
generation {
 }
 bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:outer-edge-port
 outer-vid 20 inner-vid 7,1
 }
}
interface oep3 {
 name oep3
 type ianaift:bridge
 sbc
 inner-relay1
 dot1q:outer-edge-port
 outer-vid 85 inner-vid 9,12
}
bridge-port {
 bridge-name EDE-CC1
 component-name outer-relay1
 port-type dot1q:outer-network-port
}
interface onp1 {
 name onp1
 type ianaift:bridge
 sbc
 inner-relay1
 dot1q:outer-network-port
}
}
pae {
 pae-system 1
 port-type real-port
}
bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:outer-edge-port
 outer-vid 2 inner-vid 29
}
}
interface oep2 {
 name oep2
 type ianaift:bridge
 sbc
generation {
 }
 bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:outer-edge-port
 outer-vid 20 inner-vid 7,1
 }
}
interface oep3 {
 name oep3
 type ianaift:bridge
 sbc
 inner-relay1
 dot1q:outer-edge-port
 outer-vid 85 inner-vid 9,12
}
bridge-port {
 bridge-name EDE-CC1
 component-name outer-relay1
 port-type dot1q:outer-network-port
}
interface onp1 {
 name onp1
 type ianaift:bridge
 sbc
 inner-relay1
 dot1q:outer-network-port
}
}
pae {
 pae-system 1
 port-type real-port
}
bridge-port {
 bridge-name EDE-CC1
 component-name inner-relay1
 port-type dot1q:outer-edge-port
 outer-vid 2 inner-vid 29
}
}
Comments?