YANG Based VLAN and VID Config for MACsec and MAC Privacy 802.1AEdk

Don Fedyk (dfedyk@labn.net)
Outline

• Forward
• Background Review
• Configuring EDE types with current YANG using Yuma123
Forward

• This presentation is for a discussion on detailed config.
• It may contain errors/omission and should be consider a work in progress.
• An updated version the presentation will be posted after discussion to correct it but it will remain a work in progress.
MACsec

- MACsec is a shim on the leg of a bridge.
- Therefore all VLAN tag configuration just flows through as MACsec does frame by frame authentication and encryption.
- The VLAN tag has the EtherType the priority code point the discard eligible marking and the VLAN ID (VID)
- But in Ethernet Encryption devices the VLAN tagging of frames is implied by component types.
 - Using current IEEE802 YANG there are gaps.
- MAC Privacy also can be collocated with MACsec and has the same behavior with respect to VLAN tag configuration
- MAC Privacy may be physically separate from MACsec and needs both address and VLAN tag controls for this case.
IEEE 802.1Q-2018 Definitions

3.290 Virtual Local Area Network (VLAN): The closure of a set of Media Access Control (MAC) Service Access Points (MSAPs) such that a data request in one MSAP in the set is expected to result in a data indication in another MSAP in the set.

VLAN Config is out of scope for MACsec and MAC privacy

3.294 Virtual Local Area Network (VLAN) tagged frame: A tagged frame whose tag header carries both VLAN identification (VLAN ID or VID) and priority information.

VLAN tags are in scope for EDEs and MAC privacy.
C-VLAN/VID S-VLAN/VID Summary

• The VLAN is the connectivity
• The VLAN Tag is carried on the Frame
• C-TAGs have a TPID – EtherType of 0x8100 & PCP/DE/VID
• S-TAGs have a TPID – EtherType of 0x88A8 & PCP/DE/VID
• One VID is typically used for the control plane RSTP etc.
• Multiple VIDs can map to a single VLAN – this is accomplished with VID and FID mappings – hope not to cover this in MACsec.
Cases handled the Bridge and Provider Bridge using SNMP and YANG

Most Frequent:
• Untagged Frames arrive at a C-Component interface
• C-Tagged Frames arrive/terminate at a C-Component interface
• C-Tagged Frames Map to an S-Component
 • C-tagged frames arrive at a customer network port on an S-vlan-component
• S-Tagged Frames terminate at an S-Component

Less Frequent:
• S-Tagged Frames carry an untagged frame
• S-Tagged Frames arrive at a C-Component
Review: Bridge VLAN Tag Configuration
From 802.1Q-2018

EISS shall be supported by using one but not both of the following VLAN tag types:
 a) C-VLAN tag (C-TAG) or
 b) S-VLAN tag (S-TAG)

Each Bridge Port shall support the following parameters for use by these functions:
 c) An Acceptable Frame Types parameter with at least one of the following values:
 1. Admit Only Untagged and Priority-tagged frames
 2. Admit Only VLAN-tagged frames
 3. Admit All frames
 d) A PVID parameter for Port-based VLAN classification

Each Bridge Port may support the following parameters:
 e) A VID Set for Port-and-Protocol-based classification (6.12)
 f) A VID translation table
 g) An Egress VID translation table
Bridge VLAN tags With and Without MACsec Bridges and Interfaces

MACsec has no specific VLAN Tag Config
In YANG two top level Trees contain VLAN Tag config
EDEs and YANG Summary

- **EDE-M**
 - VLAN TAG Unaware same YANG

- **EDE-CC**
 - C-VLAN comes from Bridge and outer C-VID is from inner C-VID

- **EDE-CS**
 - C-VLAN comes From Bridge and outer S-VID comes from another Bridge but there is a port mapping function.

- **EDE-SS**

Started here since it follows the standard provider bridge and should have VLAN tag Controls
How to do this? Use YUMA123

Yuma123 – Open Source

• Offers a live configuration environment
• Handles multiple YANG modules together
• Validates xpath statements.

• Parts of the Bridge models due not work in Yuma1232 due to various xpath errors that limited vlan configuration.
• Removing (locally) and eventually correcting xpath allows visibility into what can be configured and to test a complete config.
Revisiting MACsec Config for EDEs

YANG models all these () ports
From 802.1AE-2018 Clause 15.5 CS-EDE

Arriving C-tagged data
Travels Transparent through C-Bridge CEP PEP
S-component adds the S-TAG
First consider a single PEP-CNP mapping

C-TAG – any
S-TAG 200 (or any single legal VID value)
Resulting Config – Is it Complete?

rpc-reply {
 data {
 bridges {
 bridge pebridge1 {
 name pebridge1
 address 11-11-11-11-11-11
 bridge-type dot1q:provider-edge-bridge
 component cvlan1 {
 name cvlan1
 type dot1q:c-vlan-component
 component svlan200 {
 name svlan200
 type dot1q:s-vlan-component
 bridge-vlan {
 vlan 200 {
 vid 200
 name svid200
 }
 }
 }
 }
 }
 }
 interfaces {
 interface cep1 {
 name cep1
 type ianaift:bridge
 bridge-port {
 bridge-name pebridge1
 component-name cvlan1
 port-type dot1q:customer-edge-port
 svid 200
 }
 }
 interface cnp1 {
 name cnp1
 type ianaift:bridge
 bridge-port {
 component-name svlan200
 port-type dot1q:customer-network-port
 }
 }
 }
 }
}

Note that any additional VLAN config is not illustrated
Resulting Config – Is it Complete?

interface pep1 {
 name pep1
 type ianaift:bridge
 secy {
 pae {
 bridge-port {
 bridge-name pebridge1
 component-nps cvlan1
 port-type dot1q:provider-edge-port
 }
 }
 }
 port {
 bridge-name pebridge1
 component-nps svlan1
 port-type dot1q:provider-network-port
 }
}

Note that any additional VLAN config is not illustrated.

Nothing special for the S-vlan component.
Questions with the config

• There is an implication when the C-VLAN and the S-VLAN are associated that a certain relationship a binding exists.
• There is all kinds of VLAN related config that is left out.
Now consider Multiple C-VID mapped to SVIDs

Arriving C-TAG -> Maps to SVID
Transparent through C-Bridge CEP PEP
Additional S-TAG
Resulting Config – Is this Complete?

```
rpc-reply {
  data {
    bridges {
      bridge bridge1 {
        name bridge1
        address 11:11:11:11:11:11
        bridge-type dot1q:provider-edge-bridge
        component cvlan1 {
          name cvlan1
          type dot1q:c-vlan-component
        }
        component svlan200 {
          name svlan200
          type dot1q:vlan-component
          vid 200
        }
        component svlan203 {
          name svlan203
          type dot1q:vlan-component
          vid 203
        }
        component svlan204 {
          name svlan204
          type dot1q:vlan-component
          vid 204
        }
      }
    }
  }
}
```

Multiple CVIDs map to SVIDs

Note VID Ranges would be a better way to map multiple C-VIDs to S-VIDs
Assumes a bidirectional mapping
Questions

• VID ranges would be beneficial
What about the Reverse Mapping

The Provider Bridging (PB) SNMP has two tables:

- `ieee8021PbCVIDRegistrationEntry` that links CVIDs to SVIDs egress the S-component – Just illustrated

- `ieee8021PbEdgePortEntry` an ingress the S-Component when the CVID is Untagged

 <- This function perhaps is missing in PB YANG?

- Note this situation is unlikely in the case of an CS-EDE this is Provider bridge configuration
Control of egress SVIDs

Provider bridging allows Internal mapping of S-VIDs to External S-VIDs. Is this used for EDEs? Seems unlikely – so far.
Untagged ports

• The C-VLAN-Component can have Untagged or Tagged ports on the cep for sure.
 • On the pep?

• So can the S-VLAN- Component
 • On the pnp for sure
 • One the cnp ?
A CC- EDE

- A CC-EDE is an Ethernet Data Encryption device
- “The configuration of an EDE-CC is constrained to restrict egress for each Provider Edge Port to a single C-VID and to restrict the PVID for the internally connected Customer Network Port to the same value, with the consequence that the outer C-VID will always match the inner C-VID. The PVID for the Customer EdgePort is constrained to be the same as that for the Provider Network Port and the Static VLAN RegistrationEntry (8.8.2 of IEEE Std 802.1Q-2018) for that and other VIDs are constrained so that frames for that VID are transmitted untagged on both ports, with the consequence that frames received untagged on either ports are forwarded (if at all) untagged on the other.”
Some CC-EDE related config

rpc-reply {
 data {
 bridges {
 bridge pebridge1 {
 name pebridge1
 address 11-11-11-11-11
 bridge-type dot1q:provider-edge-bridge
 component cvlan1 {
 name cvlan1
 type dot1q:c-vlan-component
 filtering-database {
 filtering-entry 1 200 11-11-11-22-22-22 {
 database-id 1
 vids 200
 address 11-11-11-22-22-22
 entry-type static
 port-map 1 {
 port-ref 1
 static-vlan-registration-entries {
 registrar-admin-control fixed-new-propagated
 vlan-transmitted tagged
 }
 }
 }
 bridge-vlan {
 vlan 200 {
 vid 200
 name outer_cc_ede_200
 }
 }
 }
 }
 }
 }
 }
}

Is Bridge Type still Provider Edge Bridge? How about a cc-ede-device?

Two c-vlan-components cvlan1 and cvlan2. This is cvlan1

Only one VID Vid 200

Static registration entry

Transmit with TAG

At this point the separation of EDE and Bridging is mixed.
Some CC-EDE related config

Two c-vlan-components cvlan1 and cvlan2. This is cvlan2
Only one VID Vid 200
Static registration entry required?
Transmit with TAG
This is the customer edge port it needs a PVID of 200
It is linked to cvlan1
This is the Customer network port it needs a PVID of 200
It is linked to cvlan1

component cvlan2 {
 name cvlan2
type dot1q-c-vlan-component
bridge-vlan {
 vlan 200 {
 vid 200
 name inner_cc_ede_200
 }
}
}

interfaces {
 interface cep1 {
 name cep1
type ianaift:bridge
bridge-port {
 bridge-name pebridge1
component-name cvlan1
port-type dot1q:customer-edge-port
 pvid 200
 }
 }
 interface cnp1 {
 name cnp1
type ianaift:bridge
bridge-port {
 component-name cvlan2
port-type dot1q:customer-network-port
 pvid 200
 }
 }
Some CC-EDE related config

interface pep1 {
 name pep1
 type ianaift:bridge
 secy {
 }
 pae {
 }
 bridge-port {
 bridge-name pebridge1
 component-name cvlan1
 port-type dot1q:provider-edge-port
 }
}

interface pnp1 {
 name pnp1
 type ianaift:bridge
 bridge-port {
 bridge-name pnpbridge1
 component-name cvlan2
 port-type dot1q:provider-network-port
 }
}
nacm {
}
system {
 pae-system {
 name pae1
 }
}

This is the provider edge port
It is linked to cvlan2

This is the provider network port
It is linked to cvlan2
What is missing

- There is no configuration that ties the two cvlan components together,
- Two cvlan components can exist with one or more svlan components.
- Suggest an explicit config to tie cvlans together.
- Looks like adding bridge types for cc-ede and cs-ede would be one way.
EDE - SS

• TBD
• Waiting to see if CS-EDE and CC-EDE config is good.
Summary

This presentation has focused on how to configure bridge components to configure various VID tag operations.

This presentation will be updated with the comments from the group.
Backup

• Following is a condensed overview of the Bridge YANG files.
• They may be useful to describe where the relevant config is configured.
• The original YANG that is published is the source.
Bridge Config – VLAN Only
Condensed! – Not Complete

Filtering database

Control Plane VLAN

STP/RSTP/MSTP/SPB VLAN

module: ieee802-dot1q-bridge
 +--rw bridges
 +--rw Bridge* [name] if:interface-ref
 +--rw bridge-port* [name]
 | +--rw filtering-database [database-id vids address]
 | +--rw vids dot1qtypes:vid-range-type
 | +--rw port-map* [port-ref]
 | +--rw (map-type)
 | +--rw (static-vlan-registration-entries)
 | +--rw (mac-address-registration-entries)
 | +--rw (dynamic-reservation-entries)
 | +--rw (dynamic-filtering-entries)
 | +--rw vlan-registration-entry* [database-id vids]
 | +--rw vids dot1qtypes:vid-range-type
 | +--rw port-map* [port-ref]
 +--rw interface-database* [database-id vids address]
 +--rw port-map* [port-ref]
 +--ro bridge vlan uint16
 +--ro override-default-vid? boolean
 +--ro protocol-template? dot1qtypes:protocol-frame-format-type (port-and-protocol-based-vlan)?
 +--ro mgx-name? uint16
 +--ro vlan { vid if:interface-ref }
 | +--rw vlan-index-type dot1qtypes:vlan-indexType
 | +--rw vlan-name? dot1qtypes:vlan-name-type
 | +--rw untagged-ports* [interface-ref]
 | +--ro access-ports* [interface-ref]
 | +--rw protocol-group-database* [db-index] (port-and-protocol-based-vlan)?
 | +--rw vid-to-fid-allocation* [vids]
 | +--rw vid dot1qtypes:vlan-index-type
 | +--rw allocation-type?enumeration
 | +--rw fid uint32
 | +--rw allocation-attr dot1qtypes:vlan-index-type
 | +--rw allocation-attr?enumeration
 | +--rw allocation-attr?enumeration
 +--rw bridge-fid uint32 dot1qtypes:mtsid-type
 +--rw fid-to-mtsid* [fid] dot1qtypes:mtsid-type
 +--rw mtsid? dot1qtypes:mtsid-type
 +--rw mtsid? dot1qtypes:mtsid-type
 +--rw mtsid? dot1qtypes:mtsid-type

3/16/2020
IEEE 802.1 Plenary Atlanta 2020 (Virtual) 33
null
Provider Bridge Config – Interface Based

module: ieee802-dot1q.pb
 augment /if:interfaces/if:interface/dot1q:bridge-port:
 ++-rw svid? dot1q-types:vlanid
 +-rw cvid-registration* [cvid]
 ++-rw cvid dot1q-types:vlanid
 ++-rw svid? dot1q-types:vlanid
 +-rw untagged-pep? boolean
 | ++-rw untagged-cep? boolean
 ++-rw service-priority-regeneration* [svid]
 ++-rw svid dot1q-types:vlanid
 ++-rw priority-regeneration
 | ++-rw priority0? priority-type
 | ++-rw priority1? priority-type
 | ++-rw priority2? priority-type
 | ++-rw priority3? priority-type
 | ++-rw priority4? priority-type
 | ++-rw priority5? priority-type
 | ++-rw priority6? priority-type
 | ++-rw priority7? priority-type
 ++-rw rcap-internal-interface* [external-svid]
 ++-rw external-svid dot1q-types:vlanid
 ++-rw internal-port-number? dot1q-types:port-number-type
 ++-rw internal-svid? dot1q-types:vlanid
 ++-rw internal-interface-type? enumeration

 CVID Registration
 Port and Protocol Based
 VID Translation