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1 Overview
Current proposals for Ethernet [etf20] and IP Traffic Flow Security [Hop20] describe methods for tunneling user
traffic (ethernet or IP packets) within TFS tunnel PDUs. These proposals allow user packets to be fragmented and/or
aggregated within tunnel PDUs, and specify headers at the start of each user packet component within the tunnel
PDU. A TFS receiver parses tunnel PDUs to recover the original user packets, splitting on component boundaries and
reassembling fragments as needed. These proposals specify in-line frame headers, which requires that receivers read
packet memory at each frame boundary in order to reconstitute tunneled user packets.

We consider modifying the protocol formats to collect framing headers into a single block in order to reduce
memory I/O at the receiver and allow for increased performance. Based on our assumptions about user packet size
statistics, the case for making this modification does not seem compelling.

2 Current Inline Framing
Ethernet TFS encapsulation uses the following format:
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IP TFS encapsulation uses the following format:

IP ESP IP TFS

IP
1 user data

IP
2 user data . . .

IP
n user data

In general, user packets are encapsulated in TFS tunnel PDUs in the order they were received. User packets may
be fragmented across multiple TFS tunnel PDUs as needed to fill tunnel PDUs to a configured maximum size.

The Component Header or internal IP header includes a length field indicating the framing boundary and start of
the next component. A receiver must parse each Component Header or internal IP header to divide the tunnel PDU
into its constituent fragments/user packets for further processing.

3 Performance Drawbacks
Software-based data plane implementations read the first part of a received packet (i.e., the header) to determine how
to handle it, but generally do not read the rest of the packet data. Thus access to approximately one data cache-
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line’s worth of packet header data is a fixed minimum cost. Subsequent random-access reads incur additional latency
penalties. Typical cache line sizes are 64 or 128 bytes (processor-specific).

The first-order problem we seek to address is the penalty due to gathering the framing information in the tunnel
packet. The current TFS encapsulation formats distribute framing information across the tunnel packet data area;
computing the locations of each frame boundary requires a probable data cache miss for each boundary.

A second-order problem is the alignment of the framing headers with respect to the data cache-line boundaries. If
a header straddles a boundary, two cache misses occur before the header can be fully parsed.

4 Proposed Framing Trailer
We proposed to collect the component headers into a single region of the tunnel PDU, and thus reduce the processing
latency for the tunnel receiver. This approach addresses the first-order problem described above by gathering the
framing information into a single memory region.

Early discussions considered placing an aggregated offset array at the head of the tunnel packet, but this approach
had several drawbacks:

1. When constructing the tunnel PDU, an encapsulator does not necessarily know the makeup of all components
when it places the first component, so the size of the complete set of component headers is not known at this
time.

Thus, either a speculative fixed-size header space must be set aside at the head of the packet, or the header (and
its preceding headers) must be added after the payload is constructed.

A speculative fixed-size header leads to less-efficient filling of tunnel packets. Adding a variable-length header
after the payload is built has its own challenges, including alignment issues and cache inefficiency.

2. The 802.1 AEdk specification includes support for late insertion of a component into a tunnel PDU after the
initial part of the PDU has been transmitted. A combined component header at the start of the PDU would be
incompatible with this feature.

However, placing an aggregated component header at the end of the tunnel PDU addresses these issues.
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The final field of the proposed Aggregated Component Header would indicate the trailer length to enable the
receiver to find the start of the trailer.

It would be possible for the proposed aggregate component header to coexist with the previously-defined dis-
tributed component headers. In this case, receivers would be free to treat it as an optional optimization.

5 Cache Alignment
The second-order problem noted in Section 3, cache-line alignment, is more challenging. Tunnel PDUs are subject
to various perturbations between the encapsulator and receiver such as label/tag insertions which could affect the
memory alignment of the received packet. This problem is subject to many unknowns and it is not clear that a solution
is possible.

The effect of cache alignment on an aggregated component header is +/-1 cache miss. By itself, such a small
advantage might not be worth trying to address.

2



It may also be advantageous to align the start of each encapsulated user packet to optimize processing of decap-
sulation results. In the case of IP TFS, knowledge of the encapsulated packet type (IPv4 vs. IPv6) could come into
play.

6 Expected Performance Benefit
Internet packet size distribution today seems bimodal with approximately 40% 64-byte packets and 40% 1500-byte
packets [EEM19].

To simplify analysis, we assume 50% 64-byte packets and 50% 1500-byte packets. We also consider scenarios
involving 9000-byte packets as jumbo packets are becoming more common.

For the proposed trailer variations, we consider both non-cache-aligned (2 cache misses) and cache-aligned (1
cache miss) trailer cases.

6.1 1500-in-1500
A typical 1500-byte tunnel PDU carrying 1500-byte user packets is shown below. Statistically, we expect the tunnel
to carry almost but not quite one 64-byte user packet per tunnel packet. We further expect almost but not quite one
1500-byte user packet per tunnel packet, and due to TFS opportunistic packing, we expect almost all tunnel packets to
carry these 1500 byte user packets in the form of two fragments.

dst
src
etype
C

m
pH

dr

∼ 700b user fragment
C

m
pH

dr
64b user pkt

C
m

pH
dr

∼ 700b user fragment

Eth Header

With distributed component headers, we expect that the first header would already be in the data cache due to adja-
cency to the ethernet header, but two additional cache-miss reads would be needed to access the remaining component
headers, or a rate of 2

1500 = 1.33 cache-miss reads per kByte.
Using the proposed trailer, the non-cache-aligned case has the same rate, whereas the cache-aligned case has a rate

of 1
1500 = .67 cache-miss reads per kByte.

6.2 9000-in-1500
In networks carrying 9000-byte user packets in a 1500-byte tunnel, we expect a distribution of roughly six tunnel
packets carrying a single large user fragment for every tunnel packet carrying two large user fragments and a 64-byte
user packet.
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The upper tunnel PDU should not requre any cache-miss reads to access component headers, and the lower PDU
should require two, resulting in an overall rate of
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(6×0)+(1×2)
6+1 = .286 cache-miss reads/tunnel PDU

or a rate of .286
1500 = .19 cache-miss reads per kByte.

Using the proposed trailer, the non-cache-aligned case has the same rate, whereas the cache-aligned case has
(6×0)+(1×1)

6+1 = .143 cache-miss reads/tunnel PDU
or a rate of .143

1500 = .1 per kByte.

6.3 1500-in-9000
In networks carrying 1500-byte user packets in a 9000-byte tunnel, we expect a distribution of roughly six tunnel
packets carrying a single large user fragment for every tunnel packet carrying two large user fragments and a 64-byte
user packet.
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In this scenario, we expect about nine cache-miss reads per tunnel PDU or a rate of 1
1000 = 1 per kByte.

Using the proposed trailer, the non-cache-aligned case would have two cache-miss reads per tunnel PDU or a rate
of 2

9000 = .22 per kByte.
The proposed trailer in the cache-aligned case would have one cache-miss read per tunnel PDU or a rate of .11 per

kByte.

6.4 9000-in-9000
In networks carrying 9000-byte user packets in a 9000-byte tunnel, we expect the tunnel to carry almost but not quite
one 64-byte user packet per tunnel packet. We further expect almost but not quite one 9000-byte user packet per
tunnel packet, and due to TFS opportunistic packing, we expect almost all tunnel packets to carry these 9000 byte user
packets in the form of two fragments.
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With distributed component headers, we expect that the first header would already be in the data cache due to adja-
cency to the ethernet header, but two additional cache-miss reads would be needed to access the remaining component
headers, or a rate of 2

9000 = .22 cache-miss reads per kByte.
Using the proposed trailer, the non-cache-aligned case has the same rate, whereas the cache-aligned case has a rate

of 1
9000 = .11 cache-miss reads per kByte.

6.5 Comparison Summary
The cache-miss rate computations (values in misses per kByte) above are summarized here:

MTU scenario Distributed Aggregated Aggregated and Aligned
1500-in-1500 1.33 1.33 .67
9000-in-1500 .19 .19 .10
1500-in-9000 1.00 .22 .11
9000-in-9000 .22 .22 .11
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7 Conclusion
Given the statistical assumptions above, the benefits do not seem compelling. The proposed trailer would have greater
advantage for user traffic mixes with many small packets.
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