Information from SAE AS-1 to IEEE 802.1

Establishing a joint group between SAE AS-1A2 and IEEE 802.1 TSN TG to develop TSN profile for aerospace

SAE AS-1A2 Committee

Presented by Abdul Jabbar, GE Research

Information from SAE AS-1A2 to IEEE 802.1 TSN TG

2

INTERNATIONAL

535+ new documents started in 2019

Average 900 standards published (new, revised) per year

 $125\,{\rm Meetings}\,\,{\rm worldwide}$

7,600+ SAE Aerospace

Standards in marketplace

8,300+ individuals on committees

180+ technical committees

The Public-Private Partnership: Civil Aviation

SAE Aerospace Council, Global Custodians: Oversight and Governance

Airbus A4A American Airlines AVIC BAE Systems Boeing Bell CAPE CIRA COMAC EASA Embraer FAA Leonardo UPS GE Aviation

Gulfstream Aerospace Honeywell Aerospace l ockheed Martin Lufthansa Technik Meggitt Northrop Grumman Pratt & Whitney / UTC **Rolls-Royce** Safran Sikorsky Textron Aviation U.S. Department of Defense Wichita State University

2019 Meetings at COMAC, Shanghai and SAE AeroTech, Bordeaux Stakeholders: Industry, Operators, Government, Research

ICAO Observer Role

Global Stakeholders: Matching the Industry

Industry Managed Process and Stakeholders

Committee: Expertise

Council: Oversight

Marketplace

AS-1A Avionic Networks Committee

Chair: Stefano (Sam) Lassini

Document List Display: All Document			
Document	Title	<u>Date</u> ⊮	<u>Status</u>
<u>AIR1207</u>	A Primer of Aircraft Multiplexing	Jan 01, 1972	Canceled
<u>AIR1189A</u>	Airborne Internal Interface Standards for Moderate Bit Rate Digital Time Division-Multiplex Systems	May 22, 2006	Canceled
<u>AIR4272A</u>	Power Controllers: Signal Interface Applications and Considerations	May 22, 2006	Canceled
<u>ARP4258A</u>	Application of Low Speed Avionic System Discrete Signal Interfaces	May 22, 2006	Canceled
<u>AS5706</u>	Test Plan/Procedure for AS5643/1 S400 Copper Media Interface Characteristics Over Extended Distances	May 01, 2007	Issued
AIR4288A	Linear Token Passing Multiplex Data Bus User's Handbook	May 03, 2012	Stabilized
<u>AIR4289A</u>	Handbook for the SAE AS4075 High Speed Ring Bus Standard	May 03, 2012	Stabilized
<u>AIR4903A</u>	Pi-Bus Handbook	May 03, 2012	Stabilized
<u>AIR4980A</u>	Modular Avionics Backplane Functional Requirements and Consensus Items (MABFRACI)	May 03, 2012	Stabilized
<u>AS4075/1A</u>	Optical Implementation Relating to the High Speed Ring Bus (HSRB) Standard	May 03, 2012	Stabilized
<u>AS4075A</u>	High Speed Ring Bus (HSRB) Standard	May 03, 2012	Stabilized
<u>AS4290A</u>	Validation Test Plan for AS4074 Linear Token Passing Multiplex Data Bus	May 03, 2012	Stabilized
<u>AS4710A</u>	Pi-Bus	May 03, 2012	Stabilized
<u>AS5657</u>	Test Plan/Procedure for AS5643 IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications	Apr 29, 2013	Reaffirmed
<u>AS5653B</u>	High Speed Network for MIL-STD-1760	Jan 03, 2014	Revised
<u>AS1393</u>	Serial Hi-Rel Ring Network for Aerospace Applications (RingNet)	Oct 08, 2014	Reaffirmed
<u>AS5643B</u>	IEEE-1394b Interface Requirements for Military and Aerospace Vehicle Applications	Apr 04, 2016	Revised
AIR4271A	Handbook of System Data Communications	Oct 21, 2016	Stabilized
<u>AIR4295A</u>	Handbook for the Digital Time Division Command/Response Multiplex Data Bus Test Plans	Oct 21, 2016	Stabilized

<u>AIR4886A</u>	Statement on Requirements for Real-Time Communication Protocols (RTCP)	Oct 21, 2016	Stabilized
<u>AIR5683A</u>	High Performance 1553 Research and Development	Oct 21, 2016	Stabilized
<u>AS15532A</u>	Data Word and Message Formats	Oct 21, 2016	Stabilized
<u>AS4074/1B</u>	Type F-1 Fiber Optic Media Interface Characteristics	Oct 21, 2016	Stabilized
<u>AS4074/2B</u>	Type F-2 Fiber Optic Media Interface Characteristics	Oct 21, 2016	Stabilized
<u>AS4074/3B</u>	Type E-1 Electrical Media Interface Characteristics	Oct 21, 2016	Stabilized
<u>AS4074B</u>	Linear Token Passing Multiplex Data Bus	Feb 21, 2017	Stabilized
<u>AS15531A</u>	Digital Time Division Command/Response Multiplex Data Bus	Mar 21, 2017	Stabilized
<u>AS4111A</u>	Validation Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals	Aug 10, 2017	Stabilized
<u>AS4112A</u>	Production Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Remote Terminals	Aug 10, 2017	Stabilized
<u>AS4117A</u>	Test Plan for The Digital Time Division Command/Response Multiplex Data Bus Couplers, Terminators, and Data Bus Cables	Aug 10, 2017	Stabilized
<u>AS4114A</u>	Production Test Plan for the Time Division Command/Response Multiplex Data Bus Bus Controllers	Aug 14, 2017	Stabilized
<u>AS4116A</u>	Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Bus Monitors	Aug 14, 2017	Stabilized
<u>AS4115A</u>	Test Plan for the Digital Time Division Command/Response Multiplex Data Bus System	Aug 15, 2017	Stabilized
<u>AS4113A</u>	Validation Test Plan for the Digital Time Division Command/Response Multiplex Data Bus Controllers	Aug 18, 2017	Stabilized
<u>AS6089</u>	Verification Methods for AS5653 Network Controller	Oct 11, 2017	Issued
<u>AS5652A</u>	10 Megabit/sec Network Configuration Digital Time Division Command/Response Multiplex Data Bus	Jan 18, 2018	Revised
<u>AS6260</u>	Verification Methods for AS5653 Network Controller, Network Terminal, and Switch Physical Layer	Aug 13, 2018	Issued
<u>AS6088</u>	Verification Methods for AS5653 Network Terminal	Apr 24, 2019	Issued
<u>AS5643/1A</u>	S400 Copper Media Interface Characteristics Over Extended Distances	Jul 09, 2019	Revised
<u>AIR5654A</u>	IEEE-1394b for Military and Aerospace Vehicles - Applications Handbook	Aug 12, 2019	Revised

Aerospace Communications

- 1. Vehicle/Flight Systems [Safety Critical]
 - a. Inner loop controls (flight controls, fly by wire, engine controls, autopilot, autonomy-related-functions)
 - b. Displays (artificial horizon, primary flight display, engine status)
 - c. Situational awareness communications (cockpit audio, flight control communication, radios)
 - d. Flight management systems (navigation, flight planning)
- 2. Mission Systems [Mission Critical]
 - a. Mission controls, sensor systems, video/displays, radar, data storage
 - b. Passenger hosted systems, maintenance
 - c. Flight health management
 - d. Situational awareness communications
- 3. Weapons Systems [Mission and Safety critical]
- 4. Expanded Use Cases
 - a. Vehicle to ground (in air or on ground)
 - b. Vehicle to vehicle communications

Aerospace Communications

Safety Critical	Mission Critical
Strict Latency Bounds (sub milliseconds)	Moderate Latency bounds (hundreds of milliseconds)
Moderate Bandwidth (up to 100Mbps)	Very High Bandwidth (up to 100 Gbps)
High Availability	High Availability
High Integrity (low prob. of undetected erroneous data)	Medium Integrity
DO-178C/DO-254 Certification at DAL A-B Failure impact on safety, operation, or crew workload: catastrophic or hazardous	DO-178C/DO-254 Certification at DAL C-E Failure impact on safety, operation, or crew workload: major, minor, or none
Very infrequent updates to design, HW, SW	Periodic updates to design, HW, SW

Current (Aircraft) Networks

Current Military Aircraft Networks			Current Civil Aircraft Networks		
Standard	Std. Evolution	Max Data Rate	Standard	Std. Evolution	Max Data Rate
MIL-STD-1553 (Serial)	1973 – 1978	1 Mbps	ARINC 429 (serial)	1977	100 Kbps
IEEE 1394 (Firewire)	1994 – 2008	3.145 Gbps	ARINC 629 (serial)	1995	2 Mbps
MIL-STD-1760 (Fibre Channel)	1993 – Present	1.0625 Gbps	ARINC 825 (CAN)	2007	4 Mbps
IEEE 802.3 Std Ethernet	1980 – Present	10 – 400 Gbps	ARINC 664 (AFDX)	2005 – 2009	100 Mbps

Motivation for Next Gen Networks:

Higher Bandwidth and Convergence/Interoperability (weight) Motivation for Next Gen Networks: Lower "lifecycle" cost and Broad industry support/suppliers

Common Open systems requirement: Standards Based, License Free, and Evolvable

TSN seems to be a good fit

TSN Objectives in Aerospace Networks

Convergence of legacy buses on a deterministic, high performance backbone

Certifiable, standards-based (license free) deterministic, high bandwidth network

Potential: Future aerospace networks primarily based on TSN

Current SAE AS-1A2 Standards Activity

Convergence of legacy buses on a deterministic, high performance backbone

AS6509 - CAIN

- TitleConverged Aerospace Integrated Network
- **Objective** Converge Fiber Channel & COTS Ethernet into single network domain for military applications
- Approach Map FC and Ethernet on to TSN backbone
- **Status** In Progress; AS-1A2 Committee

Certifiable, standards-based (license free) deterministic, high bandwidth network

AS6675 – ATP

Aerospace TSN Profile

Interoperable TSN networks suitable for aerospace applications

Profile TSN for aerospace applications

In progress; AS-1A2 Committee

TSN Profile for Aerospace

<u>Objectives</u>

- Meet aerospace network requirements (traffic characterization in progress)
- Certifiability (reduced complexity and code)
- Interoperability
- Increased vendor base
- Lower "lifecycle" cost
- Security: neutral or positive impact
- Timely completion (AS6509 dependency, active programs and acquisitions)

<u>Uniqueness</u>

- Smaller number of use cases
- Smaller user community
- Smaller topologies
- Consensus driven by Integrators and certification
- Unique environment
- Long lifecycle (20yrs min, 50yrs expected)

Goal: Well defined TSN profile for aerospace – leading to cost effective certifiable solution for both civil and military use cases

Synchronous Profile

- Time Synchronization (AS-Rev)
- Traffic Shaping (Qbv)
- Redundancy (CB)
- Ingress Policing (Qci)
- Configuration Models (Qcw, CBcv)

Asynchronous Profile

- Traffic Shaping (Qav/Qcr?)
- Redundancy (CB)
- Ingress Policing (Qci)
- Configuration Models (Qcw, CBcv)

Conclusion

- TSN is a good fit for next generation aerospace networks
- There is a need for TSN profile for aerospace
- SAE AS-1 group has domain expertise in avionics systems
- SAE AS-1A group has expertise in avionics networks
- IEEE 802.1 TSN TG has expertise in TSN and TSN profiles
- Proposal: A collaboration between SAE and IEEE groups to jointly develop and publish a "TSN Profile for Aerospace"
- Organizational agreements in progress...
- SAE AS-1A2 committee would like to better understand IEEE 802.1 TSN TG process

Thank You

