Underlay Network Automation

Wayne Qiu
Huawei Technologies

802.1 Interim, Jan 2020, Geneva
Presentation objectives

- Outline requirements of underlay network automation.
- Discuss current gaps.
- Propose solutions to address the requirements.
Deploying an overlay is an emerging technology for campus LAN

The main functions of Campus LAN: provide connectivity & policy control (i.e. segmentation, who can access what).

- **Traditional network**
 - Policy is correlated with port location, VLAN and/or ACLs.
 - Policy is enforced by different devices at different layers.
 - Complex for policy provisioning, track and adapt when network change (i.e. mobility, BYoD).
 - Typically L2 using STP. Challenges with large-scale and maximizing utilization via load balancing.

- **Overlay network**
 - Create L2 virtual tunnels (overlay) over L3 network. Policy is only provisioned on edge devices and transparent for inter-medium nodes. Easy for policy automation (i.e. with SDN).
 - Underlay provides simple and high available connectivity, with the benefits of L3 network, i.e. fast convergence, ECMP, scalability.
 - Already supported by many vendors.
Underlay network automation: improve LAN deployment efficiency

- The network configurations can be divided into two parts:
 - Overlay network: used to provide policy provisioning such as VLAN/VxLAN mapping, VxLAN tunnel establishment…
 - Underlay network: used to provide connectivity and availability, i.e. device management IP, interface IP, routing protocol parameters, loopback IP ….

- The overlay network is typically configured via SDN controller at NOC after on-site devices can be managed remotely. Some initial underlay configurations for each device are required to get a L3 network up and running.

- Configuring the underlay network for a large-size LAN could be very time-consuming even for skilled network engineer. i.e configuring loopback IP, interface interconnecting IP and specifying the routing protocol and its parameters for thousands of switches and APs.

- Configuration automation would significantly lower the configuration overhead and reduce the cost for network deployment.
 - Eliminate repetitive configuration tasks and minimize on-site workload
 - Less skilled technician required on-site
 - Avoid human error
Automating underlay network configuration

- Power-on device defaults settings are L2. To get an L3 network up and running, the following is needed:
 - Devices need to obtain an IP address.
 - Devices need specific L3 configuration
 - Specific routed interface IP address
 - Loopback IP address
 - Routing protocol configuration (e.g. OSPF, ISIS)
 - Prevent L2 loops during L3 initialization.

- A special “entity” in the network is required. Its function include:
 - Discover the complete LAN topology;
 - Enable communication for management and configuration;
 - Enable automatic configuration for L3 routing parameters (convert the L2 device to an L3 device).
Current 802.1 LLDP protocol capability

- **802.1AB LLDP mechanism**
 - Advertises connectivity and management information about the local station to adjacent stations on the same IEEE 802 LAN.
 - Receives network management information from adjacent stations on the same IEEE 802 LAN.

- **802.1AB LLDP capability**
 - Discovers its neighbor node, relies on 3rd party (such as controller) to discover the complete topology.
 - Doesn't enable communication for configuring L3 routing parameters on other devices.
Proposed solution: a new protocol for underlay network automation

- Global topology discovery—“root-direct-connecting” bridge discovery

Link Discovery:
1. Root bridge detects its up ports and send link discovery message through all up ports.
2. Root discovered the link of Root. port 20 --- Bridge A. port 1

Device Discovery:
3. Root sends device discovery message.
4. Root saves the device information and refresh topology.
5. Root bridge assign port 1 as the uplink port of Bridge A.

Root bridge

Bridge A

Bridge C
Proposed solution: a new protocol for underlay network automation

- Global topology discovery – further bridge discovery

Link Discovery:

1. When Bridge C connects to Bridge A, Bridge A detects the port 10 is up and send link status update message to Root bridge to indicate the change.

2. Root Ack the message and find that it is a new port unassociated with any link in its database.

3. Root send link discovery message encapsulated with port tag ID 10 via its port 20. The Bridge A will then forward the message via its port 10 as indicated port tag (see next slide). Bridge A will also strip the port tag of the message before it forward to Bridge C.

4. Bridge C Ack the link discovery message via its uplink port. Bridge A will also forward it via its uplink port.

Device Discovery:

The device discovery is similar as previous slide. Only all the messages need to traverse through Bridge A.
Proposed solution: a new protocol for underlay network automation

- L2 communication path establishment and L3 parameter configuration
 - The Root bridge will build a shortest path tree for whole network by assigned the uplink port(s) for all other bridge.

From South to North
- Each port of non-root bridge either is an uplink port or downlink port.
- The frame received by a downlink port will be forwarded to uplink.
- The frame received by a downlink port is not allowed to forward to another downlink.

From North to South
- Root bridge will encapsulate the port tag in the frame to indicate the egress port of each hop.
- Each bridge will exam the tag and decide how to forward
 - If there is a port tag, forward to the corresponding port;
 - If no part tag, send to Higher Layer Entities to process.

- Root bridge can assign the IP address and provide configuration for L3 routing protocol for all other non-root bridges.
Summary

- The presentation outlines the requirements of underlay network automation.
 - Discover the complete LAN topology;
 - Enable communication for management and configuration;
 - Enable automatic configuration for L3 routing parameters (convert the L2 device to an L3 device)
- It proposes a new solution to automate underlay network configuration without human intervention for the large number non-root bridges.
 - Self-organized
 - Plug and play
- Next Step
 - More discussion?
 - Potential to form a new PAR?
Thank you