Ethernet Timestamping Precision/Accuracy

AHEAD OF WHAT'S POSSIBLE™

Dave Alsup Analog Devices

Clocks/Relationships

Timestamp Points/Signals

- Typical implementation minimizes magnitude and number of clock frequencies
- Typical MAC/port clock frequency in the neighborhood of 125 Mhz (Gbit support)
- MII is the only standard interface that provides high frequency information of transmit timing
 - MII doesn't support Gbit operation and is unpopular due to high pin count
- ► To support timestamp precision greater than 8 nsec:
 - Need additional signaling from the PHY to bridge on transmit path
 - Non-standard. Existing implementations differ (and most don't support preemption).
 - Need higher frequency logic or custom capture unit to sample timing signals (both tx and rx)
 - Need to integrate information from high precision signal logic into timestamp generation units