Introduction

- This presentation describes the LNI 4.0 approach for production lines which represent a broad market potential
- Our goal is to create understanding for low-expenditure solutions
- The support of the LNI 4.0 approach in the IEC/IEEE 60802 Industrial Profile is important
- Refer also to https://www.ieee802.org/1/files/public/docs2021/60802-Weber-MMinteract-0521-v02.pdf which describes the interactions in a production line from an application’s point of view
Production Line with TSN

Taken from LNI 4.0 Demonstrator
Where to locate Production Lines?

... addressing a broad Market of small networks in Industry

A production line network can operate stand alone or be part of an overall plant infrastructure network

The topology of a production line network follows the production line process

vSPLC: Virtualized Supervisor Programmable Logic Controller
vPLC: Virtualized Programmable Logic Controller
vIMP: Virtualized Image Processing
UNI: User Network Interface based on LRP/RAP

Unrestricted
Production Line Network Lifecycle

Focus on system integration in production lines

Day 0
Offline Network Planning

- Design network layout for time sensitive applications which share one network:
 - Definition of topology template and synchronization domains
 - Mapping of different requirements of applications to Traffic-/RA-Classes
 - RA-Class dimensioning based on RA-Class template and its mathematical model (includes definition of the common network parameter)

Day 1
Network Component Setup

- Selection of network components
- Pre-configuration of each network component out of the box (Vendor provided tools as there are settings involved not defined in IEEE standards)
- Installation of components (with hardware tools only!!)

Day 2
Operation

- All industrial applications in the endstations have knowledge about the network and synchronization status and also about the status of its streams via UNI during operation

Applications

Network

- Endstations observe, decide, act
- Establish & remove streams
- Observe connectivity, reservation status, sync
- Exchange stream data
- Feedback Loop (Iteratively)

Unrestricted
Design of future Production Lines

General Requirements

As of today:

- OT personal is in charge of production
 -> Avoid extra cost for specialists, e.g. network operator
- Production rate has to be met
 -> Begin design with sequence of actions with time constraints
- Stepwise commissioning of machines to be supported
 -> Start with partial network in operation
- Downtime has to be minimized to increase Overall Equipment Effectiveness
 -> Limit the effects of failures, avoid dependencies to components not needed in production
 -> Minimize dependencies between connected machines

New:

- Multiple applications have to be supported on a single network
 -> Integrate formerly dedicated connections:
 Eliminate discrete cabling, additional interfaces, installation and associated error sources
 -> Make machine data accessible for Smart Manufacturing:
 Avoid to re-program machines to get access to useful data
LNI 4.0 Offerings

Simplifying the Production Line Use Case

- Guidance for time-sensitive applications:
 Each RA-Class template includes a mathematical model for the dimensioning of required bandwidth, per-hop max latency and network resources based on LNI 4.0 topology

- Stepwise commissioning & production line failures:
 Network fragments work autonomously and can join automatically

- Dynamic E2E stream allocation for “plug&produce”:
 Applications can establish or remove streams from the network via UNI inside the designed “guard rails” at runtime

- Exposure of stream diagnostics via UNI:
 Applications can adapt to the actual network status through E2E stream diagnostics

- Leverage existing production line networking technology for real time:
 Streams use any given active network topology even shared with non-real time, no need for traffic engineering.

- No need for topology discovery and explicit path computing:
 In line or ring topologies, loop prevention protocols like RSTP or IEC62439 MRP are sufficient.

- Support for Minimum Viable Solutions:
 Enhancing the existing protocol stack by a single stream reservation protocol used by all time sensitive applications on a converged network is a lightweight approach which meets the application requirements.
LNI 4.0 Outlook

While the first LNI 4.0 approach is a good starting point, further enhancements are visible on the horizon:

- Participate at OPC UA Pub/Sub TSN prototyping with LNI 4.0 model
- Further reduce the entry barrier with an “unshaped” strict priority based RA-Class opening up real time support for a wide range of existing hardware
- Contribute LNI 4.0 RA-Class template proposals to IEEE P802.1Qdd RAP as part of our liaison
- Support ring topologies for high availability
- Support integration of centralized/virtualized with decentralized stream reservation
- Leverage coming RAP coordinated shared reservation to aggregate a huge number of small streams for optimizing e.g. supervisory use case
- Introduce edge device with proxy functionality to integrate legacy components or subnetworks for transparent E2E real time connectivity
- Integration of LNI 4.0 in DetNet
Summary: LNI 4.0 Highlights

LNI 4.0 promotes a simple approach for production lines, fostering smooth stepwise collaboration between automation system integrators and machine builders:

- Production line network technologies with its simple topologies are enhanced for real time.
- Automation together with network design can be verified from the start through mathematical modelling.
- All devices from different applications share the same UNI based on LRP/RAP.
- During provisioning or even in case of failures, parts of the production line continue to work self-sufficient.
- During operation, the TSN network operates autonomously providing diagnostics and reservation states to its users.
Thank You