
V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 2

IEC/IEEE 60802 Security Slice 1

 2

 3

Contributors 4

Fischer, Kai <kai.fischer@siemens.com> 5

Furch, Andreas <andreas.furch@siemens.com> 6

Pfaff, Oliver <oliver.pfaff@siemens.com> 7

Pössler, Thomas <thomas.poessler@siemens.com> 8

Steindl, Günter <guenter.steindl@siemens.com> 9

 10

Abstract 11

The purpose of this text is to establish a common understanding of TSN-IA security. An 12

incremental procedure is applied in bottom-up style: 13

i. First increment (V0.1 and V0.2, this version): bootstrapping IA components with 14

respect to NETCONF-over-TLS; provides chapters 1 to 4.1 15

ii. Second increment (V0.3, later): equipping IA components for NETCONF-over-TLS; 16

will provide chapter 4.2 17

iii. Third increment (V0.4, later): securely managing IA components with 18

NETCONF/YANG; will provide chapter 5 19

iv. Forth increment (V0.5, later): equipping IA components for other kinds of exchanges; 20

will provide chapter 6 21

v. Fifth increment (V0.6, later): securely using IA components in course of other kinds of 22

exchanges; will provide chapter 7 23

Elaborations of this text provide a skeleton for the security profile text in D1.3 of TSN Profile 24

for Industrial Automation. It also provides a background for describing the security use cases. 25

Log 26

v0.1 2021-05-21 Initial draft 27

v0.2 2021-06-11 Editorial changes, document structure refined, 28

elaboration on the bootstrapping challenge (chapter 4.1) 29

and corresponding sequence charts (Annex C) 30

Contents 31

1 Preconditions .. 4 32

2 Goal .. 4 33

3 Identifying the Challenges ... 5 34

3.1 Imprinting Challenge ... 5 35

3.2 Bootstrapping Challenge ... 6 36

3.2.1 Server Identity Checking Challenge ... 6 37

3.2.2 Client Identity Verification Challenge ... 6 38

3.2.3 Client Authorization Challenge ... 6 39

4 Solving the Challenges .. 7 40

4.1 Bootstrapping Challenge ... 7 41

4.1.1 Server Identity Checking Challenge ... 7 42

4.1.2 Client Identity Verification Challenge ... 8 43

4.1.3 Client Authorization Challenge ... 8 44

4.2 Imprinting Challenge ... 9 45

5 Using the Solution ... 9 46

5.1 Message Exchange Protection for NETCONF/YANG ... 9 47

mailto:kai.fischer@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:thomas.poessler@siemens.com
mailto:guenter.steindl@siemens.com

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 3

5.2 Resource Access Authorization for NETCONF/YANG ... 9 48

6 Exploiting the Solution ... 9 49

7 Using the Exploitation .. 10 50

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG ... 10 51

7.2 Other Exchanges ... 10 52

Annex A IEEE 802.1AR ‘Secure Device Identity’ ... 11 53

A.1 IDevID Objects.. 11 54

A.2 LDevID Objects ... 11 55

Annex B IETF RFC 6125 ... 13 56

Annex C Sequence Charts .. 14 57

C.1 Post Imprinting Processing Steps.. 14 58

C.2 Imprinting Processing Steps.. 14 59

C.2.1 Server Identity Checking Sub-Steps .. 14 60

C.2.2 Client Identity Verification Sub-Steps ... 15 61

 62

References 63

[1] IETF RFC 4949: Internet Security Glossary, Version 2, 2007 64

[2] IETF RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2, 2008 65

[3] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate 66

Revocation List (CRL) Profile, 2008 67

[4] IETF RFC 5890: Internationalized Domain Names for Applications (IDNA): Definit ions 68

and Document Framework, 2010 69

[5] IETF RFC 5891: Internationalized Domain Names in Applications (IDNA): Protocol , 2010 70

[6] IETF RFC 6125: Representation and Verification of Domain-Based Application Service 71

Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the 72

Context of Transport Layer Security (TLS), 2011 73

[7] IETF RFC 6241: Network Configuration Protocol (NETCONF), 2011 74

[8] IETF RFC 7589: Using the NETCONF Protocol over Transport Layer Security (TLS) with 75

Mutual X.509 Authentication, 2015 76

[9] IETF RFC 7950: The YANG 1.1 Data Modeling Language, 2016 77

[10] IEEE 802.1AR-2018: IEEE Standard for Local and Metropolitan Area Networks–Secure 78

Device Identity, 2018 79

[11] IETF RFC 8341: Network Configuration Access Control Model, 2018 80

[12] IETF RFC 8366: A Voucher Artifact for Bootstrapping Protocols , 2018 81

[13] IETF RFC 8572: Secure Zero Touch Imprinting (SZTP), 2019 82

[14] IETF RFC 8995: Bootstrapping Remote Secure Key Infrastructure (BRSKI) , 2021 83

Abbreviations 84

ASCII American Standard Code for Information Interchange 85

CA Certification Authority 86

CN Common Name (X.500) 87

DN Distinguished Name (X.500) 88

DNS Domain Name Service 89

EE End Entity 90

FQDN Fully Qualified Domain Name 91

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 4

HW HardWare 92

IA Industrial Automation 93

IDevID Initial Device IDentifier 94

LDevID Locally significant Device IDentifier 95

NETCONF NETwork CONFiguration 96

OoB Out-of-Band 97

SZTP Secure Zero Touch Provisioning 98

TLS Transport Layer Security 99

TOFU Trust On First Use 100

URL Uniform Resource Locator 101

YANG Yet Another Next Generation 102

1 Preconditions 103

Following preconditions are assumed: 104

• IA systems are equipped with system components from multiple manufacturers. 105

• Each individual system component has a housing that carries an end station or bridge 106

component. 107

• By the time a system component is shipped by its manufacturer, it is assumed to 108

comprise the following as part of its factory defaults: 109

o IDevID credential object: defined by IEEE 802.1AR, see [10], to be further 110

profiled by IEC/IEEE 60802. This object encompasses1: 111

▪ Private key 112

▪ End entity (EE) certificate (plus intermediate CA certificates) containing 113

product master data identifying the physical instance of this 114

component according to manufacturer knowledge e.g., product serial 115

number and in an eternal manner. 116

Note: IDevID EE certificates cannot contain deployment master data e.g., 117

application name(s) or IP address(es). 118

o Corresponding trust anchor: also defined by IEEE 802.1AR, see [10]. This 119

object represents the manufacturer certification authority (CA), often in the 120

form of a self-signed CA certificate. It is used to initialize the validation of 121

certification paths of peers, see [3]. 122

o Secure element component: generic or dedicated HW (the exact form factor is 123

out-of-scope for IEC/IEEE 60802) providing: 124

▪ Persistent storage for keys and credentials esp. IDevID/LDevID 125

credentials and corresponding trust anchors (see below) 126

▪ Execution environment for these keys and credential 127

Note: this is also known as DevID module in IEEE 802.1AR, see [10] 128

2 Goal 129

A system component (that fulfills the prerequisites above) shall participate in protected 130

network configuration. Assumptions: 131

• Network configuration uses NETCONF/YANG according [7] and [9] 132

—————————
1 Hint: IDevID EE certificates can be thought of as “birth certificates” - they contain data that is known by the time-

of-birth.

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 5

• Secure transport for NETCONF is TLS according [8] 133

• The system component acts in (NETCONF and TLS) server role – its network 134

configuration happens according to a push supply 135

Using NETCONF-over-TLS is straightforward provided the NETCONF-over-TLS server (i.e., 136

the to-be-managed system component) possesses: 137

• A credential (private key, EE certificate [plus intermediate CA certificates]) that 138

matches the requirements in sections 6 of RFCs 7589 (see [8]) resp. RFC 6125 (see 139

[6]): the component’s FQDN has to be part of the subjectAltName extension in its 140

EE certificate 141

• Trust anchor(s) that allow to validate the EE certificates (plus intermediate CA 142

certificates) of its NETCONF-over-TLS clients. 143

Important: these objects are not available when the to-be-managed system component boots 144

with its factory defaults. This text addresses this challenge as follows: 145

• Chapters 3 and 4 describe the equipment of IA components with credentials and trust 146

anchors required for NETCONF-over-TLS. This applies resp. happens when IA 147

components boot with factory defaults. 148

• Chapter 5 describes the secure management of IA components with NETCONF/YANG 149

using TLS as secure transport. This applies resp. happens after IA components were 150

equipped with credentials and trust anchors for NETCONF-over-TLS (explained in 151

chapters 3 and 4). 152

• Chapters 6 describes the equipment of IA components with credentials and trust 153

anchors required for other exchanges than NETCONF-over-TLS. This applies resp. 154

happens after IA components were equipped with credentials and trust anchors for 155

NETCONF-over-TLS (explained in chapters 3 and 4). 156

• Chapter 7 describes the secure employment of IA components in other exchanges 157

than NETCONF/YANG. This applies resp. happens after IA components were 158

equipped with credentials and trust anchors for other exchanges than NETCONF-over-159

TLS (explained in chapter 6). 160

3 Identifying the Challenges 161

3.1 Imprinting Challenge 162

Supply the LDevID-NETCONF credential and corresponding trust anchor in a secure manner 163

to a system component that is booting from factory default state2 and that shall be managed 164

by means of NETCONF-over-TLS. 165

Notes: 166

• The shorthand term LDevID-NETCONF is used for an LDevID3 credential according to 167

IEEE 802.1AR (see [10]) which also matches the requirements that are set forth in 168

sections 6 of RFC 7589 (see [8]) resp. RFC 6125 (see [6]). 169

—————————
2 The imprinting of an IA component with its LDevID-NETCONF credential as well as the corresponding trust anchor

shall happen once when booting from factory default state.

3 In general, LDevID credentials encompass:

• Private key

• EE certificate containing deployment master data identifying the component according to deployment
knowledge e.g., application name(s) or IP address(es) and in a time-limited manner.

Hint: LDevID EE certificates can be thought of as “driving licenses” - they contain info that is unknown when “birth
certificates” are issued e.g., driving license classes

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 6

• The specific term ‘imprinting’ is used for equipping IA components with the LDevID-170

NETCONF credential and corresponding trust anchor instead of the generic term 171

‘provisioning’ (can refer to any supply, is not limited to credentials and trust anchors) 172

Suggested approach for solving this imprinting challenge4: use NETCONF-over-TLS for 173

supplying the LDevID-NETCONF credential and corresponding trust anchor. The LDevID-174

NETCONF credential and corresponding trust anchor supply happens in NETCONF payload 175

according to a YANG model. 176

3.2 Bootstrapping Challenge 177

When this imprinting happens the to-be-provisioned objects cannot be simultaneously used in 178

the TLS layer5. Other credentials and trust anchors must be used in the TLS layer when 179

performing NETCONF-over-TLS exchanges for imprinting the LDevID-NETCONF credential and 180

corresponding trust anchor. 181

Suggested approach for solving this bootstrapping challenge: use the IDevID credential and 182

corresponding trust anchor on TLS level when doing the NETCONF-over-TLS exchanges to 183

provision the LDevID-NETCONF credential and corresponding trust anchor. 184

This approach results in several sub-challenges that are identified below. 185

3.2.1 Server Identity Checking Challenge 186

As a client that is performing this imprinting, how to check the server identity before supplying 187

sensitive resources to it (the LDevID-NETCONF credential)? 188

Note: the RFC 7589 (see [8]) resp. RFC 6125 (see [6]) matching rule is geared towards server 189

identity checking in a post imprinting phase (“all is setup”). When RFC 7589 resp. RFC 6125 190

matching would be used during the credential imprinting phase, it would prohibit the supply. 191

3.2.2 Client Identity Verification Challenge 192

As a to-be-provisioned server (the IA component), how to check the client identity before 193

accepting critical changes of the own state (the trust anchor that allows to validate the 194

LDevID-NETCONF and other EE certificates presented by peer entities)? 195

Note: clients that call the IA component for doing the imprinting must be assumed to be 196

equipped with credentials from an authority that is not yet known by the to-be-provisioned IA 197

component which is booting from factory default.6 198

3.2.3 Client Authorization Challenge 199

As a to-be-provisioned server (the IA component), how to determine whether the current client 200

is authorized7 to perform the imprinting of LDevID-NETCONF credential plus corresponding 201

trust anchor? 202

Note: RFC 8341 (NACM, see [11]) is geared towards authorizing operations in the post 203

imprinting phase (“all is setup”). When RFC 8341 authorization would be used during the 204

credential and trust anchor imprinting phase, it would prohibit this supply. 205

—————————
4 NETCONF SZTP in [13] is no (full) solution for this imprinting challenge: it does not cover the credential port ion.

The trust anchor portion is covered but SZTP uses pull or physical push (Removeable Storage)

5 The TLS handshake that demands the objects happens before the NETCONF application exchange .

6 Albeit RFC 5246 is not explicit on what must happen when certification path validation fails, it is fair to expect the
vast majority of server-side implementations to interrupt a TLS handshake when seeing a client certificate that
cannot be validated with the already configured trust anchors.

7 There is also a post-imprinting client authorization challenge (not considered here): as an already provisioned
server, how to determine whether a client is authorized to perform its network configuration actions?

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 7

4 Solving the Challenges 206

4.1 Bootstrapping Challenge 207

Using the mechanisms described below, the bootstrapping part of the imprinting challenge can 208

be solved. 209

4.1.1 Server Identity Checking Challenge 210

The IA component exposes a NETCONF service over TLS that is using its IDevID credential 211

for authenticating itself while booting from factory default state and to be imprinted with an 212

LDevID-NETCONF credential. 213

This provides following actuals to the imprinting client for checking the server: 214

• The issuer field in the IDevID EE certificate. IEEE 802.1AR (see [10]) requires this 215

value to present a domain of uniqueness for the product serial number . 216

• The product serial number value from the IDevID EE certificate. IEEE 802.1AR 217

requires this value to be provided in a serialNumber attribute8 of the subject field. 218

Before imprinting the LDevID-NETCONF credential, the imprinting client checks the actual 219

server identity that is stated by the IA component on TLS level by matching against: 220

• A list of accepted (or blocked) manufacturers 221

Note: matching between legal registration or common names on root level9 and X.500 222

name on leaf level10 representations. The caveat is: X.500 issuer names are 223

mandated for X.509 certificates but uncommon outside the PKI domain. TODO: 224

discussion is needed if a matching shall be specified in TSN-IA (normative text) or 225

whether TSN-IA just provides some background (informative text). 226

• Per accepted manufacturer, a list of accepted (or blocked) product instances by their 227

product serial number incl. wildcards 228

Details of how this matching happens depends on the implementation of the client that 229

performs this imprinting. For example: 230

• A human-operated imprinting client might trigger a dialogue by displaying the actuals 231

and asking for an “Okay or not okay?” input by its operator before proceeding. The 232

operator then performs this checking OoB - from the perspective of the imprinting 233

client. 234

• An automatedly operating imprinting client might demand to be (pre-)configured with 235

input about the “expected” system components and performs an automated checking. 236

• Items to follow-up in a discussion with IEEE Security WG (regarded a TODO) 237

o Home of product serial number (subject name (as serial number attribute) vs. 238

subject alternative name) 239

o Consideration of industry-wide unique product instance identifiers in addition 240

(or instead) to the current product instance identifiers that are (at most) 241

manufacturer-wide unique 242

—————————
8 This attribute is identified by the OID 2.5.4.5 which is defined by X.520 (see RFC 4519) .

9 E.g. “Antarctica; Super-Duper-Manufacturer, Inc.; Place of Registration: McMurdo, AQ; Registered
Office Address: 77, Mt. Erebus Drive, McMurdo, AQ; Registration Ref.: XY-4711”

10 E.g. “C=AQ,O=Super-Duper-Manufacturer,OU=Industrial Automation,CN=IDevID Issuing CA V1.0”

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 8

4.1.2 Client Identity Verification Challenge 243

The IA component exposes a NETCONF service over TLS that is using its manufacturer 244

installed trust anchors for authenticating clients while booting from factory default state and to 245

be imprinted with a trust anchor (that allows to validate LDevID-NETCONF and other EE 246

certificates presented by peer entities) . 247

This (and only this) endpoint performs a “provisional accept of client cert”11 according 248

following procedure: 249

1. Challenge the client for TLS client authentication (required by RFC 7589, see [8]) by 250

sending a CertificateRequest message (required by RFC 5246, see [2]) with an 251

empty certificate_authorities entry 252

2. Perform certification path validation according to RFC 5280 (see [3]) for the contents 253

of the client’s Certificate message (fail if the certificate list in this message is 254

empty) 255

3. Provisionally accept a failing certification path validation when the reason is ‘no 256

matching trust anchor ’ (and only this reason) and proceed with the TLS exchanges. 257

4. Expect the client to send a trust anchor in the NETCONF application payload over this 258

provisionally accepted TLS session (nothing else) . This shall happen in one of two 259

forms (see chapter 4.2 for further details of this supply): 260

a. Plain form: a raw X.509 CA certificate as part of a YANG object. Only syntax 261

and simple hygiene checks are possible in this case, no actual cryptographic 262

checks. This object is accepted when syntax and hygiene checks are passed. 263

This provides a TOFU model. 264

b. Protected form: an X.509 CA certificate that is embedded in a voucher (RFC 265

8366, see [12]) as part of a YANG object. The voucher is a signed object that 266

can be cryptographically checked with the manufacturer-provided trust 267

anchors. This object is accepted when cryptographic as well as syntax and 268

hygiene checks are passed. 269

TODO: elaborate on delegation models, voucher object flavors/details 270

(with/without nonce etc) 271

TODO: consider whether one of the two (which?) or both (how to enforce 272

“protected” then?) shall be supported? 273

5. If the trust anchor in the NETCONF application payload was accepted, then redo the 274

certification path validation using this object (see step 2). 275

6. If this revalidation is successful, then the client identity is successfully established. 276

7. If client identity is successfully established, perform the client authorization (see 277

below): 278

a. If authorized: persist the provisioned trust anchor and use it for subsequent 279

certification path validation operations 280

b. Else: refuse the supplied trust anchor 281

4.1.3 Client Authorization Challenge 282

The authorization of clients for the task of imprinting the LDevID-NETCONF credential and the 283

corresponding trust anchor when booting from factory default state is subject to the security 284

model for imprinting the trust anchor: 285

—————————
11 This is a mirrored version of the “provisional accept of server cert” in RFC 8995 (see [14])

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 9

• Plain form: in the TOFU case, the to-be-provisioned server (the IA component) has no 286

reasonable means to distinguish the following cases: 287

o Client is authenticated and authorized for doing this imprinting 288

o Client is authenticated but not authorized for doing this imprinting 289

Hence in the TOFU model all authenticated clients are accepted as authorized for 290

doing the imprinting of the LDevID-NETCONF credential and the corresponding trust 291

anchor. Only contextual checks such as “once only when bootstrapping from factory 292

default” (first-one-wins) are feasible. TODO: discuss whether such contextual checks 293

shall be described in a normative way 294

• Protected form: in the voucher case, the details of an authorization model are up to 295

the manufacturer as voucher object production is done (or delegated) by the 296

manufacturer and voucher object consumption is done by a product of this 297

manufacturer. This allows to support various models including: 298

o Any client of any owner/operator organization can perform this imprinting – 299

voucher is not bound to owner/operator organization and/or their clients 300

o Any client of a dedicated owner/operator organization can perform this 301

imprinting – voucher is bound to an owner/operator organization but not to 302

their clients 303

o Only dedicated clients of a dedicated owner/operator organization can perform 304

this imprinting – voucher is bound to an owner/operator organization as well as 305

to dedicated clients 306

Detailing such bindings is out-of-scope for IEC/IEEE 60802. 307

4.2 Imprinting Challenge 308

TODO: describe the solution for the imprinting using NETCONF (RFC 6241) and the YANG 309

models for key and trust stores that currently emerge from the IETF 310

(https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-22, 311

https://www.ietf.org/archive/id/draft-ietf-netconf-trust-anchors-15.html) 312

5 Using the Solution 313

5.1 Message Exchange Protection for NETCONF/YANG 314

TODO: describe message exchange protection of NETCONF/YANG exchanges with TLS as 315

secure transport (text is meant to be a profile of RFC 7589; further profiling is needed if 316

further NETCONF secure transports (e.g. SSH, QUIC) shall also be supported by TSN-IA) 317

TODO: are other secure transports for NETCONF/YANG than TLS in scope of TSN-IA? 318

5.2 Resource Access Authorization for NETCONF/YANG 319

TODO: describe resource access authorization for NETCONF/YANG exchanges (text is 320

meant to be a profile of RFC 8341) 321

6 Exploiting the Solution 322

TODO: describe how the imprinting solution can be used for other kinds of credentials 323

and trust anchors than the ones for NETCONF 324

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-keystore-22

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 10

7 Using the Exploitation 325

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG 326

TODO: describe how the imprinting solution can be exploited to protect other kinds of 327

TSN-IA defined exchanges 328

7.2 Other Exchanges 329

Using this exploitation is regarded a matter of middleware and application components. 330

This needs to be elaborated by these specifications. It is not detailed by TSN-IA. 331

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 11

Annex A IEEE 802.1AR ‘Secure Device Identity’ 332

A.1 IDevID Objects 333

• Abbreviation for: Initial Device IDentifier 334

• Definition (somewhat rephrased for simplicity): a manufacturer-generated and installed 335

object that is cryptographically bound to the component, and that comprises (see [10] 336

for all applicable details): 337

o An asymmetric private key 338

o An EE certificate which binds the corresponding public key to information about 339

the component and that is stated by its manufacturer. This certificate is assumed 340

to be: 341

▪ Valid eternally (notAfter=99991231235959Z) 342

▪ Have an X.500 subject field (DN) carrying a unique product serial 343

number12. 344

▪ Not self-signed 345

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 346

certificate to the trust anchor (self-signed root CA certificate) of the manufacturer 347

• Quantity: IEEE 802.1AR-2018 allows one component to possess one or more IDevIDs 348

(IEEE 802.1AR-2009 did limit this to one IDevID). 349

• Important: 350

o IDevID issuance and supply is meant to happen once in the lifetime of the 351

component (during its manufacturing and before its shipment). Typically, the 352

IDevID object is never updated or erased. 353

o Since IDevID objects are created at component manufacturing time they can 354

only contain information known at manufacturing time (these items are called 355

‘product master data’ herein) . 356

o System integrators and owner/operators do not have to worry about IDevID 357

object production - they consume IDevIDs only. 358

o Invalidation of an IDevID credential does not (have to) prevent the usage of the 359

component: 360

▪ This only prevents the use of this IDevID object. This affects usages of 361

this IDevID after the invalidation event, not (or not necessarily) earlier 362

usages of this IDevID before its invalidation event. 363

▪ This does not affect the usage of other IDevID credentials - if there are 364

multiple IDevID credential objects for a specific component. 365

A.2 LDevID Objects 366

• Abbreviation for: Locally significant Device IDentifier 367

• Definition (somewhat rephrased for simplicity): a system integrator or owner/operator-368

generated and installed object that is cryptographically bound to the component, and 369

that comprises (see [10] for all applicable details): 370

—————————
12 The serialNumber value shall be unique within the domain of significance that is identified by the issuer name, not

just within the context of precursor DN fields in the subject name

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 12

o An asymmetric private key 371

o An EE certificate which binds the corresponding public key to information about 372

the component and that is stated by its system integrator or owner/operator. This 373

certificate is assumed to be: 374

▪ Not eternal, no [notBefore, notAfter] interval length is suggested 375

▪ Not self-signed 376

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 377

certificate to the trust anchor (self-signed root CA certificate) of the system 378

integrator or owner/operator. 379

• Quantity: IEEE 802.1AR-2009 and 2018 allow one component to possess one or more 380

LDevIDs 381

• Important: 382

o LDevID issuance and supply is meant to happen one or more times during the 383

lifetime of the component (during bootstrapping or even operation phases). The 384

LDevID objects can be updated or erased. A security model is needed to prevent 385

attackers from supplying or managing LDevID objects. 386

o The LDevID objects are created at bootstrapping or even operation time of the 387

component. Hence, they can and shall contain information known when this 388

component is bootstrapped or operated but which is not known when the 389

component is manufactured (this is also called ‘deployment master data’ herein). 390

o Manufacturers do not have to worry about LDevID supply. With respect to 391

LDevIDs their “only” concern is supplying (protected and initially empty) storage 392

and means to support system integrators and owners/operators e.g ., building 393

blocks for cryptographic operations such as random number generation, key pair 394

generation, object signing and validating. 395

o Invalidation of an LDevID credential does not (have to) prevent the usage of the 396

component: 397

▪ This only prevents the use of this LDevID credential. This affects usages 398

of this LDevID credential after the invalidation event, not (or not 399

necessarily) earlier usages of this IDevID before its invalidation event. 400

▪ This does not affect the usage of other LDevID credentials - if there are 401

multiple LDevID credential objects for a specific component . 402

▪ Although this reads equivalent to the corresponding section for IDevIDs, 403

the consequences of a LDevID invalidation are more severe than IDevID 404

invalidation. This is due to following: 405

• LDevIDs should be assumed to be used often (hint: “daily use”) 406

• IDevIDs can be assumed to be used occasionally (hint: “annual 407

use”) 408

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 13

Annex B IETF RFC 6125 409

RFC 6125 (see [6]) is mandated for checking the identity of a NETCONF-over-TLS server by 410

RFC 7589 ‘Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual 411

X.509 Authentication ’ (see [8]). 412

RFC 6125 requires the name of an application service to be (or to be based on) a DNS 413

domain name in one of the following forms: 414

• Traditional domain name: a FQDN with labels constrained to ASCII letter, digits and 415

hyphen (further small-print applies) 416

• Internationalized domain name: a FQDN with at least one Unicode label (further 417

small-print applies) 418

Following ‘actual vs. expected’-matching rules apply for checking the identity of a NETCONF-419

over-TLS server based on their application names: 420

• Actual (FQDN in subjectAltName extension of the EE certificate) is a traditional 421

domain name: case-insensitive ASCII comparison against expected (from address info 422

e.g., request URL) 423

• Actual (FQDN in subjectAltName extension of the EE certificate) is an 424

internationalized domain name: case-insensitive ASCII comparison against expected 425

(from address info e.g., request URL) after performing any U-label to an A-label, cf. 426

RFC 5890 (see [4]) and RFC 5891 (see [5]) for details. 427

• Actual (FQDN in subjectAltName extension of the EE certificate) contains a wildcard in 428

its leftmost label: 429

o “*” always matches e.g., foo.example.com matches *.example.com (does not 430

match foo.example.net or foo.superexample.com) 431

o “<abc>*<xyz>” matches when it matches e.g., foobar.example.com matches 432

foo*.example.com (small-print applies, see RFC 6125) 433

• Actual (CN in subject field [this is an X.500 DN] of the EE certificate) is a traditional 434

domain name: case-insensitive ASCII comparison against expected (from address info 435

e.g., request URL) 436

As a last resort check (if no FQDN can be found in the subjectAltName extension of the EE 437

certificate) these matching rules can be applied to the CN portion of the subject DN value 438

(small-print applies, see RFC 6125). 439

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 14

Annex C Sequence Charts 440

C.1 Post Imprinting Processing Steps 441

Sequence chart for NETCONF-over-TLS exchanges (RFCs 5246, 7589, 8341) once the IA 442

component was equipped for this purpose: 443

 444

C.2 Imprinting Processing Steps 445

Sequence chart for equipping an IA component to participate in NETCONF-over-TLS 446

exchanges: 447

 448

C.2.1 Server Identity Checking Sub-Steps 449

Sequence sub-chart for checking the server identity for NETCONF-over-TLS in case of an IA 450

component that booted in factory default state: 451

V0.2 2021-06-11

Security Slice IEC/IEEE 60802 Page 15

 452

C.2.2 Client Identity Verification Sub-Steps 453

Sequence sub-chart for verifying the client identity for NETCONF-over-TLS in case of an IA 454

component that booted in factory default state: 455

 456

