
V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 2

IEC/IEEE 60802 Security Slice 1

 2

 3

Contributors 4

Fischer, Kai <kai.fischer@siemens.com> 5

Furch, Andreas <andreas.furch@siemens.com> 6

Pfaff, Oliver <oliver.pfaff@siemens.com> 7

Pössler, Thomas <thomas.poessler@siemens.com> 8

Steindl, Günter <guenter.steindl@siemens.com> 9

 10

Abstract 11

The purpose of this text is to establish a common understanding of TSN-IA security. An 12

incremental procedure is applied in bottom-up style: 13

i. First increment (V0.1 and V0.2, prior versions): establishing TLS with IA components 14

(in TLS server role) that boot with factory defaults ; provides chapters 1 to 4.1 15

ii. Second increment (V0.3, this version): equipping IA components with trust anchors 16

and credentials for NETCONF-over-TLS; provides chapter 4.2 17

iii. Third increment (V0.4, later): securely using IA components with NETCONF/YANG; 18

will provide chapter 5 19

iv. Forth increment (V0.5, later): equipping IA components with trust anchors and 20

credentials for other exchanges (non-NETCONF/YANG); will provide chapter 6 21

v. Fifth increment (V0.6, later): securely using IA components with other exchanges 22

(non-NETCONF/YANG); will provide chapter 7 23

Elaborations of this text provide a skeleton for the security profile text in D1.3 of TSN Profile 24

for Industrial Automation. It also provides a background for describing the security use cases. 25

Log 26

v0.1 2021-05-21 Initial draft 27

v0.2 2021-06-11 Editorial changes, document structure refined, 28

elaboration on the bootstrapping challenge (chapter 4.1) 29

and corresponding sequence charts (Annex C) 30

v0.3 2021-06-25 Elaboration on the imprinting challenge (chapter 4.2) 31

Contents 32

1 Preconditions .. 4 33

2 Goal .. 5 34

3 Identifying the Challenges ... 6 35

3.1 Imprinting Challenge ... 6 36

3.2 Bootstrapping Challenge ... 6 37

3.2.1 Server Identity Checking Challenge ... 6 38

3.2.2 Client Identity Verification Challenge ... 6 39

3.2.3 Client Authorization Challenge ... 7 40

4 Solving the Challenges .. 7 41

4.1 Bootstrapping Challenge ... 7 42

4.1.1 Server Identity Checking Challenge ... 7 43

4.1.2 Client Identity Verification Challenge ... 8 44

4.1.3 Client Authorization Challenge ... 9 45

4.2 Imprinting Challenge ... 9 46

4.2.1 Use Cases ... 9 47

mailto:kai.fischer@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:thomas.poessler@siemens.com
mailto:guenter.steindl@siemens.com

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 3

4.2.2 Design ... 10 48

4.2.3 Illustration ... 16 49

5 Using the Solution – With Respect To NETCONF/YANG .. 19 50

5.1 Message Exchange Protection for NETCONF/YANG ... 19 51

5.2 Resource Access Authorization for NETCONF/YANG ... 19 52

6 Exploiting the Solution – Other Trust Anchors and Credentials 20 53

6.1 Supply .. 20 54

6.2 Handling ... 20 55

7 Using the Exploitation – Beyond NETCONF/YANG .. 20 56

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG ... 20 57

7.2 Other Exchanges ... 20 58

Annex A IEEE 802.1AR ‘Secure Device Identity’ ... 21 59

A.1 IDevID Objects.. 21 60

A.2 LDevID Objects ... 21 61

Annex B IETF RFC 6125 ... 23 62

Annex C Sequence Charts .. 24 63

C.1 Post Imprinting Processing Steps.. 24 64

C.2 Imprinting Processing Steps.. 24 65

C.2.1 Server Identity Checking Sub-Steps .. 24 66

C.2.2 Client Identity Verification Sub-Steps ... 25 67

 68

References 69

[1] IETF RFC 4949: Internet Security Glossary, Version 2, 2007 70

[2] IETF RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2, 2008 71

[3] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate 72

Revocation List (CRL) Profile, 2008 73

[4] IETF RFC 5890: Internationalized Domain Names for Applications (IDNA): Definitions 74

and Document Framework, 2010 75

[5] IETF RFC 5891: Internationalized Domain Names in Applications (IDNA): Protocol , 2010 76

[6] IETF RFC 6125: Representation and Verification of Domain-Based Application Service 77

Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the 78

Context of Transport Layer Security (TLS), 2011 79

[7] IETF RFC 6241: Network Configuration Protocol (NETCONF), 2011 80

[8] IETF RFC 7589: Using the NETCONF Protocol over Transport Layer Security (TLS) with 81

Mutual X.509 Authentication, 2015 82

[9] IETF RFC 7950: The YANG 1.1 Data Modeling Language, 2016 83

[10] IEEE 802.1AR-2018: IEEE Standard for Local and Metropolitan Area Networks–Secure 84

Device Identity, 2018 85

[11] IETF RFC 8341: Network Configuration Access Control Model, 2018 86

[12] IETF RFC 8342: Network Management Datastore Architecture (NMDA), 2018 87

[13] IETF RFC 8366: A Voucher Artifact for Bootstrapping Protocols , 2018 88

[14] IETF RFC 8572: Secure Zero Touch Imprinting (SZTP), 2019 89

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 4

[15] IETF RFC 8995: Bootstrapping Remote Secure Key Infrastructure (BRSKI), 2021 90

[16] IETF NETCONF WG: A YANG Data Model for a Truststore (draft-ietf-netconf-trust-91

anchors-15), Internet Draft, Work in Progress, 2021 92

[17] IETF NETCONF WG: A YANG Data Model for a Keystore (draft-ietf-netconf-keystore-93

22.html), Internet Draft, Work in Progress, 2021 94

[18] IETF NETCONF WG: YANG Data Types and Groupings for Cryptography (draft-ietf-95

netconf-crypto-types-20.html), Internet Draft, Work in Progress, 2021 96

Abbreviations 97

ASCII American Standard Code for Information Interchange 98

ASN Abstract Syntax Notation 99

CA Certification Authority 100

CMS Cryptographic Message Syntax 101

CN Common Name (X.500) 102

CSR Certificate Signing Request 103

DER Distinguished Encoding Rules 104

DN Distinguished Name (X.500) 105

DNS Domain Name Service 106

EE End Entity 107

FQDN Fully Qualified Domain Name 108

HW HardWare 109

IA Industrial Automation 110

IDevID Initial Device IDentifier 111

LDevID Locally significant Device IDentifier 112

NETCONF NETwork CONFiguration 113

NMDA Network Management Datastore Architecture 114

OoB Out-of-Band 115

PEM Privacy Enhanced Mail 116

PKCS Public Key Cryptography Standards 117

SZTP Secure Zero Touch Provisioning 118

TDME TSN Domain Management Entity 119

TLS Transport Layer Security 120

TOFU Trust On First Use 121

URL Uniform Resource Locator 122

YANG Yet Another Next Generation 123

1 Preconditions 124

Following preconditions are assumed: 125

• IA systems are equipped with system components from multiple manufacturers. 126

• Each individual system component has a housing that carries an end station or bridge 127

component. 128

• By the time a system component is shipped by its manufacturer, it is assumed to 129

comprise the following as part of its factory defaults: 130

o IDevID credential object: defined by IEEE 802.1AR, see [10], to be further 131

profiled by IEC/IEEE 60802. This object encompasses1: 132

▪ Private key 133

▪ End entity (EE) certificate (plus intermediate CA certificates) containing 134

product master data identifying the physical instance of this 135

—————————
1 Hint: IDevID EE certificates can be thought of as “birth certificates” - they contain data that is known by the time-

of-birth.

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 5

component according to manufacturer knowledge e.g., product serial 136

number and in an eternal manner. 137

Note: IDevID EE certificates cannot contain deployment master data e.g., 138

application name(s) or IP address(es). 139

o Corresponding trust anchor: also defined by IEEE 802.1AR, see [10]. This 140

object represents the manufacturer certification authority (CA), often in the 141

form of a self-signed CA certificate. It is used to initialize the validation of 142

certification paths of peers, see [3]. 143

o Secure element component: generic or dedicated HW (the exact form factor is 144

out-of-scope for IEC/IEEE 60802) providing: 145

▪ Persistent storage for keys and credentials esp. IDevID/LDevID 146

credentials and corresponding trust anchors (see below) 147

▪ Execution environment for these keys and credential 148

Note: this is also known as DevID module in IEEE 802.1AR, see [10] 149

2 Goal 150

A system component (that fulfills the prerequisites above) shall participate in protected 151

network configuration. Assumptions: 152

• Network configuration uses NETCONF/YANG according [7] and [9] 153

• Secure transport for NETCONF is TLS according [8] 154

• The system component acts in (NETCONF and TLS) server role – its network 155

configuration happens according to a push supply 156

Using NETCONF-over-TLS is straightforward provided the NETCONF-over-TLS server (i.e., 157

the to-be-managed system component) possesses: 158

• A credential that matches the requirements in sections 6 of RFCs 7589 (see [8]) resp. 159

RFC 6125 (see [6]): the component’s FQDN has to be part of the subjectAltName 160

extension in its EE certificate 161

• Trust anchor(s) that allow to validate the EE certificates (plus intermediate CA 162

certificates) of its NETCONF-over-TLS clients. 163

Important: these objects are not available when the to-be-managed system component boots 164

with its factory defaults. This text addresses this challenge as follows: 165

• Chapters 3 and 4 describe the equipment of IA components with credentials and trust 166

anchors required for NETCONF-over-TLS. This applies resp. happens when IA 167

components boot with factory defaults. 168

• Chapter 5 describes the secure management of IA components with NETCONF/YANG 169

using TLS as secure transport. This applies resp. happens after IA components were 170

equipped with credentials and trust anchors for NETCONF-over-TLS (explained in 171

chapters 3 and 4). 172

• Chapters 6 describes the equipment of IA components with credentials and t rust 173

anchors required for other exchanges than NETCONF-over-TLS. This applies resp. 174

happens after IA components were equipped with credentials and trust anchors for 175

NETCONF-over-TLS (explained in chapters 3 and 4). 176

• Chapter 7 describes the secure employment of IA components in other exchanges 177

than NETCONF/YANG. This applies resp. happens after IA components were 178

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 6

equipped with credentials and trust anchors for other exchanges than NETCONF-over-179

TLS (explained in chapter 6). 180

3 Identifying the Challenges 181

3.1 Imprinting Challenge 182

Supply the LDevID-NETCONF credential and corresponding trust anchor in a secure manner 183

to a system component that is booting from factory default state2 and that shall be managed 184

by means of NETCONF-over-TLS. Notes: 185

• The shorthand term LDevID-NETCONF is used for an LDevID3 credential according to 186

IEEE 802.1AR (see [10]) which also matches the requirements that are set forth in 187

sections 6 of RFC 7589 (see [8]) resp. RFC 6125 (see [6]). 188

• The specific term ‘imprinting’ is used for equipping IA components with the LDevID-189

NETCONF credential and corresponding trust anchor instead of the generic term 190

‘provisioning’ (can refer to any supply, is not limited to credentials and trust anchors) 191

Suggested approach for solving this imprinting challenge4: use NETCONF-over-TLS for 192

supplying the LDevID-NETCONF credential and corresponding trust anchor. The LDevID-193

NETCONF credential and corresponding trust anchor supply happens in NETCONF payload 194

according to a YANG model. 195

3.2 Bootstrapping Challenge 196

When this imprinting happens the to-be-provisioned objects cannot be simultaneously used in 197

the TLS layer5. Other credentials and trust anchors must be used in the TLS layer when 198

performing NETCONF-over-TLS exchanges for imprinting the LDevID-NETCONF credential and 199

corresponding trust anchor. 200

Suggested approach for solving this bootstrapping challenge: use the IDevID credential and 201

corresponding trust anchor on TLS level when doing the NETCONF-over-TLS exchanges to 202

provision the LDevID-NETCONF credential and corresponding trust anchor. 203

This approach results in several sub-challenges that are identified below. 204

3.2.1 Server Identity Checking Challenge 205

As a client that is performing this imprinting, how to check the server identity before supplying 206

sensitive resources to it (the LDevID-NETCONF credential)? 207

Note: the RFC 7589 (see [8]) resp. RFC 6125 (see [6]) matching rule is geared towards server 208

identity checking in a post imprinting phase (“all is setup”). When RFC 7589 resp. RFC 6125 209

matching would be used during the credential imprinting phase, it would prohibit the supply. 210

3.2.2 Client Identity Verification Challenge 211

As a to-be-provisioned server (the IA component), how to check the client identity before 212

accepting critical changes of the own state (the trust anchor that allows to validate the 213

LDevID-NETCONF and other EE certificates presented by peer entities)? 214

—————————
2 The imprinting of an IA component with its LDevID-NETCONF credential as well as the corresponding trust anchor

shall happen once when booting from factory default state.

3 In general, LDevID credentials encompass:

• Private key

• EE certificate containing deployment master data identifying the component according to deployment
knowledge e.g., application name(s) or IP address(es) and in a time-limited manner.

Hint: LDevID EE certificates can be thought of as “driving licenses” - they contain info that is unknown when “birth
certificates” are issued e.g., driving license classes

4 NETCONF SZTP in [14] is no (full) solution for this imprinting challenge: it does not cover the credential portion.
The trust anchor portion is covered but SZTP uses pull or physical push (Removeable Storage)

5 The TLS handshake that demands the objects happens before the NETCONF application exchange .

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 7

Note: clients that call the IA component for doing the imprinting must be assumed to be 215

equipped with credentials from an authority that is not yet known by the to-be-provisioned IA 216

component which is booting from factory default.6 217

3.2.3 Client Authorization Challenge 218

As a to-be-provisioned server (the IA component), how to determine whether the current client 219

is authorized7 to perform the imprinting of LDevID-NETCONF credential and trust anchor? 220

Note: RFC 8341 (NACM, see [11]) is geared towards authorizing operations in the post 221

imprinting phase (“all is setup”). When RFC 8341 authorization would be used during the 222

credential and trust anchor imprinting phase, it would prohibit this supply. 223

4 Solving the Challenges 224

4.1 Bootstrapping Challenge 225

Using the mechanisms described below, the bootstrapping part of the imprinting challenge can 226

be solved. 227

4.1.1 Server Identity Checking Challenge 228

The IA component exposes a NETCONF service over TLS that is using its IDevID credential 229

for authenticating itself while booting from factory default state and to be imprinted with an 230

LDevID-NETCONF credential. 231

This provides following actuals to the imprinting client for checking the server: 232

• The issuer field in the IDevID EE certificate. IEEE 802.1AR (see [10]) requires this 233

value to present a domain of uniqueness for the product serial number . 234

• The product serial number value from the IDevID EE certificate. IEEE 802.1AR 235

requires this value to be provided in a serialNumber attribute8 of the subject field. 236

Before imprinting the LDevID-NETCONF credential, the imprinting client checks the actual 237

server identity that is stated by the IA component on TLS level by matching against: 238

• A list of accepted (or blocked) manufacturers 239

Note: matching between legal registration or common names on root level9 and X.500 240

name on leaf level10 representations. The caveat is: X.500 issuer names are 241

mandated for X.509 certificates but uncommon outside the PKI domain. TODO: 242

discussion is needed if a matching shall be specified in TSN-IA (normative text) or 243

whether TSN-IA just provides some background (informative text). 244

• Per accepted manufacturer, a list of accepted (or blocked) product instances by their 245

product serial number incl. wildcards 246

Details of how this matching happens depends on the implementation of the client that 247

performs this imprinting. For example: 248

—————————
6 Albeit RFC 5246 is not explicit on what must happen when certification path validation fails, it is fair to expect the

vast majority of server-side implementations to interrupt a TLS handshake when seeing a client certificate that
cannot be validated with the already configured trust anchors.

7 There is also a post-imprinting client authorization challenge (not considered here): as an already provisioned
server, how to determine whether a client is authorized to perform its network configuration actions?

8 This attribute is identified by the OID 2.5.4.5 which is defined by X.520 (see RFC 4519).

9 E.g. “Antarctica; Super-Duper-Manufacturer, Inc.; Place of Registration: McMurdo, AQ; Registered
Office Address: 77, Mt. Erebus Drive, McMurdo, AQ; Registration Ref.: XY-4711”

10 E.g. “C=AQ,O=Super-Duper-Manufacturer,OU=Industrial Automation,CN=IDevID Issuing CA V1.0”

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 8

• A human-operated imprinting client might trigger a dialogue by displaying the actuals 249

and asking for an “Okay or not okay?” input by its operator before proceeding. The 250

operator then performs this checking OoB - from the perspective of the client. 251

• An automatedly operating imprinting client might demand to be (pre-)configured with 252

input about the “expected” system components and performs an automated checking. 253

Items to follow-up in a discussion with IEEE Security WG (regarded a TODO): Home of 254

product serial number (subject name (as serial number attribute) vs. subject alternative 255

name). Consideration of industry-wide unique product instance identifiers in addition (or 256

instead) to the current product instance identifiers that are (at most) manufacturer-wide 257

unique 258

4.1.2 Client Identity Verification Challenge 259

The IA component exposes a NETCONF service over TLS that is using its manufacturer 260

installed trust anchors for authenticating clients while booting from factory default state and to 261

be imprinted with a trust anchor (that allows to validate LDevID-NETCONF and other EE 262

certificates presented by peer entities) . 263

This (and only this) endpoint performs a “provisional accept of client cert”11 according 264

following procedure: 265

1. Challenge the client for TLS client authentication (required by RFC 7589, see [8]) by 266

sending a CertificateRequest message (required by RFC 5246, see [2]) with an 267

empty certificate_authorities entry 268

2. Perform certification path validation according to RFC 5280 (see [3]) for the contents 269

of the client’s Certificate message (fail if the certificate list in this message is 270

empty) 271

3. Provisionally accept a failing certification path validation when the reason is ‘no 272

matching trust anchor ’ (and only this reason) and proceed with the TLS exchanges. 273

4. Expect the client to send a trust anchor in the NETCONF application payload over this 274

provisionally accepted TLS session (nothing else) . This shall happen in one of two 275

forms (see chapter 4.2 for further details of this supply): 276

a. Plain form: a raw X.509 CA certificate as part of a YANG object. Only syntax 277

and simple hygiene checks are possible in this case, no actual cryptographic 278

checks. This object is accepted when syntax and hygiene checks are passed. 279

This provides a TOFU model. 280

b. Protected form: an X.509 CA certificate that is embedded in a voucher (RFC 281

8366, see [13]) as part of a YANG object. The voucher is a signed object that 282

can be cryptographically checked with the manufacturer-provided trust 283

anchors. This object is accepted when cryptographic as well as syntax and 284

hygiene checks are passed. 285

TODO: elaborate on delegation models, voucher object flavors/details 286

(with/without nonce etc) 287

5. If the trust anchor in the NETCONF application payload was accepted, then redo the 288

certification path validation using this object (see step 2). 289

6. If this revalidation is successful, then the client identity is successfully established. 290

7. If client identity is established, perform the client authorization (see below): 291

—————————
11 This is a mirrored version of the “provisional accept of server cert” in RFC 8995 (see [15])

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 9

a. If authorized: persist the provisioned trust anchor and use it for subsequent 292

certification path validation operations 293

b. Else: refuse the supplied trust anchor 294

4.1.3 Client Authorization Challenge 295

The authorization of clients for the task of imprinting the LDevID-NETCONF credential and the 296

corresponding trust anchor when booting from factory default state is subject to the security 297

model for imprinting the trust anchor: 298

• Plain form: in the TOFU case, the to-be-provisioned server (the IA component) has no 299

reasonable means to distinguish the following cases: 300

o Client is authenticated and authorized for doing this imprinting 301

o Client is authenticated but not authorized for doing this imprinting 302

Hence in the TOFU model all authenticated clients are accepted as authorized for 303

doing the imprinting of the LDevID-NETCONF credential and the corresponding trust 304

anchor. Only contextual checks such as “once only when bootstrapping from factory 305

default” (first-one-wins) are feasible. TODO: discuss whether such contextual checks 306

shall be described in a normative way 307

• Protected form: in the voucher case, the details of an authorization model are up to 308

the manufacturer as voucher object production is done (or delegated) by the 309

manufacturer and voucher object consumption is done by a product of this 310

manufacturer. This allows to support various models including: 311

o Any client of any owner/operator organization can perform this imprinting – 312

voucher is not bound to owner/operator organization and/or their clients 313

o Any client of a dedicated owner/operator organization can perform this 314

imprinting – voucher is bound to an owner/operator but not to their clients 315

o Only dedicated clients of a dedicated owner/operator organization can perform 316

this imprinting – voucher is bound to an owner/operator organization as well as 317

to dedicated clients 318

Detailing such bindings is out-of-scope for IEC/IEEE 60802. 319

4.2 Imprinting Challenge 320

4.2.1 Use Cases 321

• imprintTrustAnchor: imprint a local, deployment-specific trust anchor12 (LDevID) to 322

an IA component that is booting with factory defaults. Subcases: 323

o Trust anchor is provided in plain form13 (TOFU) e.g., a X.509 certificate in 324

enveloped form without protection (such as: degenerated CMS SignedData, 325

“certs-only” [no signature], RFC 5652) or in raw form (ASN.1 DER binary, opt. 326

Base64-encoded and wrapped with PEM markers) 327

o Trust anchor is provided in protected form14 e.g., a X.509 certificate in enveloped 328

form with protection (such as: CMS SignedData [not degenerated] or a voucher 329

object [RFC 8366]) 330

—————————
12 An X.509 CA certificate that is used as an input for certification path validation (see section 6 of RFC 5280)

13 The verification of a self-signed root CA certificate only provides the integrity of this object, not its authenticity. In
other words: anybody can issue a self-signed root CA certificate object for which the signature validation works,
that appears to represent e.g., the United Nations but where its private key is controlled by another entity.

14 To establish authenticity for self-signed root CA certificate additional means are needed. Embedding self-signed
root CA certificates into RFC 8366 voucher objects provides one means to establish that.

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 10

• imprintCredential: imprint a local, deployment-specific credential15 (LDevID) to an 331

IA component that is booting with factory defaults. Subcases: 332

o IA component-external key generation 333

o IA component-internal key generation 334

TODO: imprintUsernames, imprintUserPermissions, see figures in sections C.1 335

(required objects) vs. C.2 (available objects when booting with factory defaults) ; deferred from 336

V0.3 for complexity reasons (imprintTrustAnchor/imprintCredential occupy ca. 10 337

text pages already) 338

Note: further use cases for processing local, deployment-specific trust anchors and credentials 339

do also exist. They are identified and their solution is described in section 6.2. 340

4.2.2 Design 341

4.2.2.1 Overview 342

The solution for the imprinting cases 4.2.1 uses messages, data models and data stores 343

according to RFC 6241 (NETCONF), RFC 7950 (YANG) and RFC 8342 (NMDA). 344

The following adaptation of figure in section 1.1 of RFC 6241 provides a conceptual partitioning 345

that is used to describe the design of the imprinting solution: 346

 Layer Artifacts 347

 +-------------------+ +--------------------------------------+ 348

 (4) | Content | | Credentials, trust anchors | 349

 +-------------------+ +--------------------------------------+ 350

 | | 351

 +-------------------+ +--------------------------------------+ 352

 (3) | Operations | | <edit-config>, <commit> | 353

 +-------------------+ +--------------------------------------+ 354

 | | 355

 +-------------------+ +--------------------------------------+ 356

 (2) | Messages | | <rpc>, <rpc-reply> | 357

 +-------------------+ +--------------------------------------+ 358

 | | 359

 +-------------------+ +--------------------------------------+ 360

 (1) | Secure Transport | | TLS | 361

 +-------------------+ +--------------------------------------+ 362

4.2.2.2 Secure Transport 363

RFC 7589 describes the secure transport for NETCONF/YANG exchanges using TLS. The 364

imprinting cases 4.2.1 require specific processing steps that are not covered by RFC 7589. 365

Generalizations of RFC 7589 for the imprinting cases 4.2.1 are described in section 4.1. 366

4.2.2.3 Messages 367

RFC 6241 defines the messages in NETCONF/YANG exchanges for the imprinting cases 4.2.1. 368

4.2.2.4 Operations 369

Following NETCONF operations are used for the imprinting cases 4.2.1: 370

• imprintTrustAnchor: <edit-config> and <commit> (see 4.2.3 for details) 371

• imprintCredential: <edit-config> and <commit> (see 4.2.3 for details) 372

—————————
15 A private key and the corresponding X.509 EE certificate, optionally plus intermediate sub-CA certificates

https://datatracker.ietf.org/doc/html/rfc4741#section-1.1

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 11

4.2.2.5 Content 373

Following YANG modules are used for the imprinting cases 4.2.1 as well as to access LDevID 374

and IDevID credentials and trust anchors: 375

• ietf-truststore (see [16]): YANG module for trust anchor objects 376

• ietf-keystore (see [17]): YANG module for credential objects 377

RFC 8342 defines the handling of configuration (<startup>, <candidate>, <running>, 378

<intended>) as well as operation state data stores (<operational>). This framework also 379

applies to objects in ietf-truststore and ietf-keystore modules as illustrated by 380

following adaptation of figure 2 in RFC 8342: 381

 +-------------+ +-----------+ 382

LDevID ➔ | <candidate> |<---+ +--->| <startup> | 383

 +-------------+ | | +-----------+ 384

 | | | | 385

 | +-----------+ | 386

 +-------->| <running> |<--------+ 387

 +-----------+ 388

 | 389

 v 390

 +------------+ 391

 | <intended> | 392

 +------------+ 393

 | 394

 dynamic | +-- learned configuration 395

 configuration | +-- system configuration 396

 datastores -----+ | +-- default configuration 397

 | | | 398

 v v v 399

 +---------------+ 400

 | <operational> | <-- system state  IDevID 401

 +---------------+ 402

4.2.2.5.1 Trust Anchors 403

Trust anchors are accessed by the truststore container of the ietf-truststore module 404

([16] and https://www.yangcatalog.org/yang-search/yang_tree/ietf-truststore@2021-05-18): 405

• This container can hold 0..n CA trust anchors (from LDevID and IDevID domains) 406

• Individual CA certificate objects in the truststore are 407

o Identified by their name. Well-known names (an enumeration defined by 408

IEC/IEEE 60802) shall be used to distinguish individual items. 409

o Represented as a data object of type “trust-anchor-cert-cms” (see [18]) 410

• To authenticate other system entities e.g. TDMEs, an IA component uses the 411

truststore incarnation operational. 412

• For LDevID trust anchor imprinting the truststore incarnation candidate is used16. 413

• RFC 8342 specifies the transition from candidate to operational. 414

—————————
16 IDevID trust anchor imprinting is out-of-scope for IEC/IEEE 60802

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 12

4.2.2.5.2 Credentials 415

Credentials are accessed by the keystore container of the ietf-keytstore module ([17] 416

and https://www.yangcatalog.org/yang-search/yang_tree/ietf-keystore@2021-05-18): 417

• This container can hold 0..n credential objects (from LDevID and IDevID domains) 418

• Individual credential objects in keystore are 419

o Identified by their name. Well-known names (an enumeration defined by 420

IEC/IEEE 60802) shall be used to distinguish individual items. 421

o Their certificate portion is represented as a data object of type “end-entity-cert-422

cms” (see [18]) 423

• To authenticate itself against other system entities e.g., TDMEs, an IA component uses 424

the keystore incarnation operational. 425

• For LDevID credential imprinting phase the keystore incarnation candidate is 426

used17. 427

• RFC 8342 specifies the transition from candidate to operational. 428

4.2.2.5.3 Prototype Messages 429

4.2.2.5.3.1 Imprint Trust Anchor 430

4.2.2.5.3.1.1 Plain Form 431

An example message for writing a trust anchor to the candidate configuration (see [16]): 432

<rpc message-id="001" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 433

 <edit-config> 434

 <target> 435

 <candidate/> 436

 </target> 437

 <config> 438

 <truststore xmlns=”urn:ietf:params:xml:ns:yang:ietf-truststore”> 439

 <certificate-bags> 440

 <certificate-bag> 441

 <name>LDevID Bag</name> 442

 <certificate> 443

 <name>LDevID-NETCONF</name> 444

 <cert-data>X509CaCertificateInPlainEnvelope</cert-data> 445

 </certificate> 446

 </certificate-bag> 447

 </certificate-bags> 448

 </truststore> 449

 </config> 450

 </edit-config> 451

</rpc> 452

 453

This prototype uses following specific items: 454

• message-id attribute: specific value but nothing special (could be any other value in 455

the allowed value range) 456

• name values: specific value with a special purpose (well -known value from an 457

IEC/IEEE 60802-specified enumeration to identify the scope of the given object). 458

• cert-data value: specific value of type “trust-anchor-cert-cms” providing a CA 459

certificate enveloped in Base64-encoded CMS SignedData in degenerated form “certs-460

only” (no signature value) but nothing special (could be any other value in the allowed 461

range) 462

—————————
17 IDevID credential imprinting is out-of-scope for IEC/IEEE 60802

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 13

TODO: generalize from single to multiple trust anchors for different purposes and domains. 463

Also consider the naming concept in context of these multiple purposes and domains 464

4.2.2.5.3.1.2 Protected Form 465

A proposal for an example message for writing a protected trust anchor to the candidate 466

configuration (not yet covered by [16]): 467

<rpc message-id="001” xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 468

 <action xmlns="urn:ietf:params:xml:ns:yang:1"> 469

 <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-470

usage"> 471

 <asymmetric-key> 472

 <name>LDevID-NETCONF</name> 473

 <consume-voucher xmlns="urn:iec_ieee:tsn-ia:security"> 474

 <voucher-data>rfc8366Voucher</voucher-data> 475

 </consume-voucher> 476

 </asymmetric-key> 477

 </asymmetric-keys> 478

 </action> 479

</rpc> 480

 481

This prototype uses following specific items: 482

• message-id attribute: as above 483

• name value: as above 484

• xmlns value: urn:iec_ieee:tsn-ia:security refers to an own namespace for 485

TSN-IA security for following elements: 486

o consume-voucher: specific action to trigger the IA component to validate an 487

RFC 8366 voucher object and store i t the candidate configuration (if okay) 488

o voucher-data: specific element providing a CA certificate in protected form. 489

 Important: using an own namespace is just an interim (➔ contribute to IETF) 490

 491

Note: this proposal utilizes voucher object as specified by RFC 8366. An alternative form 492

factor for the protected imprinting of trust anchors could be CMS SignedData (non-493

degenerated form) as specified in RFC 5652 (not shown above). 494

 495

Open issues: 496

• Should 60802 support the imprinting of trust anchors in protected form (in addition to 497

plain form aka TOFU) 498

• If yes: should this be based on RFC 8366 objects (aka vouchers) and/or CMS 499

SignedData (non-degenerated form) 500

• If yes: revisit resp. align the above rough-upfront syntax proposal to carry trust 501

anchors in protected form. Instead of an action this could also take the form of a 502

feature e.g. ‘protected-trust-anchor’ (or ‘protected-certificate’ in addition to ‘certificate’) 503

• When done: make a proposal towards IETF to obviate a need for 60802-specific 504

elements 505

4.2.2.5.3.2 Imprint Credential 506

4.2.2.5.3.2.1 External Key Generation 507

An example message for writing a credential with externally generated key pair to the 508

candidate configuration (see [17]): 509

<rpc message-id="001" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 510

 <edit-config> 511

 <target> 512

 <candidate/> 513

 </target> 514

 <config> 515

 <keystore xmlns=”urn:ietf:params:xml:ns:yang:ietf-keystore” 516

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto- 517

 types"> 518

 <asymmetric-keys> 519

 <asymmetric-key> 520

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 14

 <name>LDevID-NETCONF</name> 521

 <public-key-format>ct:subject-public-key-info-format 522

 </public-key-format> 523

 <public-key>base64EncodedPubKey</public-key> 524

 <private-key-format>TODO</private-key-format> 525

 <cleartext-private-key>base64EncodedPrivKey 526

 </cleartext-private-key> 527

 <certificates> 528

 <certificate> 529

 <name>EE Certificate</name> 530

 <cert-data>X509EeCertificateAndPathInEnvelope</cert-531

data> 532

 </certificate> 533

 </certificates> 534

 </asymmetric-key> 535

 </asymmetric-keys> 536

 </keystore> 537

 </config> 538

 </edit-config> 539

</rpc> 540

TODO: generalize from single to multiple credentials for different purposes and domains. Also 541

consider the naming concept in context of these multiple purposes and domains 542

 543

This prototype uses following specific items: 544

• message-id attribute: as above 545

• name values: as above 546

• private-key-format value: dedicated value with a specific purpose; refers to the 547

type and structure of a private key. Details depend on [18] and the cryptographic 548

algorithm catalogue for TSN-IA (TBD). 549

• cleartext-private-key value: the private key in plain form18 550

• public-key value: the corresponding public key (also contained as 551

SubjectPublicKeyInfo in the corresponding EE certificate) 552

• cert-data values: specific value of type “end-entity-cert-cms” providing an EE 553

certificate and its intermediate CA certificate chain enveloped in Base64-encoded 554

CMS SignedData in degenerated form (no signature value) but nothing special (could 555

be any other value in the allowed range) 556

4.2.2.5.3.2.2 Internal Key Generation 557

Example messages for writing a credential with internally generated key pair to the 558

candidate configuration. This subcase uses two exchanges. 559

 560

Exchange 1: trigger the action "generate-certificate-signing-request" (see [18]) 561

 562

Request: 563

<rpc message-id="001” xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 564

 <action xmlns="urn:ietf:params:xml:ns:yang:1"> 565

 <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-566

usage"> 567

 <asymmetric-key> 568

 <name>LDevID-NETCONF</name> 569

 <generate-certificate-signing-request> 570

 <csr-info>base64EncodedPkcs10CertificationRequestInfo</csr-info> 571

 </generate-certificate-signing-request> 572

 </asymmetric-key> 573

 </asymmetric-keys> 574

 </action> 575

</rpc> 576

—————————
18 The alternative is: <encrypted-private-key>. The option <cleartext-private-key> was picked to make a first

description as simple as possible. This is not meant as the recommended or preferred form. Subsequent versions
will elaborate on supported forms and their recommendation level for TSN-IA.

https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.html#name-the-generate-certificate-si

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 15

This request prototype uses following specific items: 577

• message-id attribute: as above 578

• name value: as above 579

• csr-info value: specific value of type Base64-encoded PKCS#10 580

CertificationRequestInfo (RFC 2986)19 but nothing special (be any other value in 581

the allowed range) 582

Caveat: what is the correct interpretation of section-3.2 of [18] ("No Support for Key 583

Generation")? A clarification is needed 584

The IA component internal processing steps that are triggered by this action are: 585

1) Receive and process the NETCONF request message (see above) 586

2) Base64-decode the <csr-info> value and parse it as a PKCS#10 587

CertificationRequestInfo object 588

3) Randomly generate a key pair for the specified algorithm (this information is provided as 589

part of SubjectPublicKeyInfo in the PKCS#10 CertificationRequestInfo) 590

4) Internally store the private key together with its metadata e.g., algorithm information, 591

<name> value in a secure manner 592

5) Put the public key into the (parsed) PKCS#10 CertificationRequestInfo 593

6) Serialize the PKCS#10 CertificationRequestInfo (including the public key) 594

7) Use the private key to create signature value for the (serialized) PKCS#10 595

CertificationRequestInfo (including the public key) 596

8) Construct a PKCS#10 CertificationRequest and Base64-encode it 597

9) Construct and send the NETCONF response message (see below) 598

Response: 599

<rpc-reply message-id="001" 600

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 601

 <certificate-signing-request 602

 xmlns="http://example.com/ns/example-crypto-types-usage"> 603

 base64EncodedPkcs10CertificationRequest 604

 </certificate-signing-request> 605

</rpc-reply> 606

 607

This request prototype uses following specific items: 608

• message-id attribute: as above 609

• certificate-signing-request value: specific value of type Base64-encoded 610

PKCS#10 CertificationRequest (RFC 2986) but nothing special (be any other 611

value in the allowed range) 612

TODO: consider using NETCONF notifications to decouple the CSR supply in a response from 613

its request (key pair generation may take some time) 614

Exchange 2: supply EE certificate and (opt.) intermediate sub-CA certificates (see [17]) 615

<rpc message-id="002" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 616

 <edit-config> 617

 <target> 618

 <candidate/> 619

 </target> 620

 <config> 621

 <keystore xmlns=”urn:ietf:params:xml:ns:yang:ietf-keystore” 622

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto- 623

 types"> 624

 <asymmetric-keys> 625

—————————
19 Note: the CertificationRequestInfo child element SubjectPublicKeyInfo contains algorithm information and

actual public key. The public key is empty when triggering the action "generate-certificate-signing-request"

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-20#section-3.2
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.html#name-the-generate-certificate-si

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 16

 <asymmetric-key> 626

 <name>LDevID-NETCONF</name> 627

 <public-key-format>ct:subject-public-key-info-format 628

 </public-key-format> 629

 <public-key>base64EncodedPubKey</public-key> 630

 <private-key-format>TODO</private-key-format> 631

 <hidden-private-key/> 632

 <certificates> 633

 <certificate> 634

 <name>EE Certificate</name> 635

 <cert-data>X509EeCertificateAndPathInEnvelope</cert-636

data> 637

 </certificate> 638

 </certificates> 639

 </asymmetric-key> 640

 </asymmetric-keys> 641

 </keystore> 642

 </config> 643

 </edit-config> 644

</rpc> 645

 646

This prototype uses following specific items: 647

• message-id attribute: as above 648

• name values: as above 649

• public-key value: as above 650

• cert-data values: as above 651

4.2.3 Illustration 652

This chapter illustrates the imprinting and use of LDevID-NETCONF credentials and trust 653

anchors. This description is informational and focusses on following “sunshine”: 654

• Step 1: Booting with IDevID 655

• Step 2: Imprinting of Trust Anchor for LDevID-NETCONF 656

• Step 3: Imprinting of LDevID-NETCONF Credential 657

• Step 4: Operationalizing LDevID-NETCONF 658

• Step 5: Using LDevID-NETCONF 659

4.2.3.1 Step 1: Booting with IDevID 660

When an IA component boots with its factory defaults, following truststore and keystore 661

incarnations become available (see RFC 8342 as well as sections 3 [16] and [17]): 662

• truststore 663

o Configuration stores: 664

▪ startup: --- 665

▪ candidate: --- 666

▪ running: --- 667

▪ intended: --- 668

o operational: trust anchor for IDevIDs (not persisted across reboots) 669

• keystore 670

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 17

o Configuration stores: 671

▪ startup: --- 672

▪ candidate: --- 673

▪ running: --- 674

▪ intended: --- 675

o operational: IDevID credential (not persisted across reboots) 676

TODO: propose a naming convention to allow the IDevID credential and trust anchor to be foun d 677

inside the truststore and keystore 678

4.2.3.2 Step 2: Imprinting of Trust Anchor for LDevID-NETCONF 679

When an IA component gets imprinted with the trust anchor for LDevID-NETCONF, the only 680

trust anchor that is available in operational allows to validate IDevID credentials. The 681

imprinting client cannot be assumed to be equipped with IDevIDs. This gap is addressed by a 682

specific procedure called “provisional accept of client cert” described above. Following 683

truststore and keystore incarnations become available through this imprinting step (see 684

4.2.2.5.3.1 for the request that triggers this state change). 685

• truststore 686

o Configuration stores: 687

▪ startup: --- 688

▪ candidate: trust anchor for LDevIDs (not persisted across reboots) 689

▪ running: --- 690

▪ intended: --- 691

o operational: trust anchor for IDevIDs (not persisted across reboots) 692

• keystore 693

o Configuration stores: 694

▪ startup: --- 695

▪ candidate: --- 696

▪ running: --- 697

▪ intended: --- 698

o operational: IDevID credential (not persisted across reboots) 699

Note: this imprinting step uses step 1 stores as follows: 700

• Trust anchor for IDevIDs in the truststore incarnation operational: not used for 701

unprotected imprinting (TOFU), used for validating the to-be-imprinted payload object 702

(voucher) for protected imprinting. In any case: not used for TLS client authentication. 703

• IDevID credential in the keystore incarnation operational: used for TLS server 704

authentication 705

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 18

4.2.3.3 Step 3: Imprinting of LDevID-NETCONF Credential 706

When an IA component gets imprinted with its LDevID-NETCONF credential directly after step 707

2, the only trust anchor that is available in operational allows to validate IDevID credentials. 708

This gap can be addressed by continuing to use the TLS session established for step 2 during 709

step 3 (if this can or shall not happen then the trust anchor for LDevID shall be propagated to 710

operational before imprinting the LDevID-NETCONF credential). Following truststore 711

and keystore incarnations become available through this procedure (see 4.2.2.5.3.2 for the 712

request that triggers this state change): 713

• truststore 714

o Configuration stores: 715

▪ startup: --- 716

▪ candidate: trust anchor for LDevIDs (not persisted across reboots) 717

▪ running: --- 718

▪ intended: --- 719

o operational: trust anchor for IDevIDs (not persisted across reboots) 720

• keystore 721

o Configuration stores: 722

▪ startup: --- 723

▪ candidate: LDevID-NETCONF credential (not persisted across 724

reboots) 725

▪ running: --- 726

▪ intended: --- 727

o operational: IDevID credential (not persisted across reboots) 728

Note: this imprinting step does not rely on step 2 additions (not yet operational) on application -729

level but relies on step 2 processing (“provisional accept of client cert”) on TLS -level. 730

4.2.3.4 Step 4: Operationalizing LDevID-NETCONF 731

By standard means (NETCONF <commit> operation) according to RFCs 6241/7950/8342, the 732

LDevID-NETCONF credential and trust anchor are operationalized. Following truststore and 733

keystore incarnations become available through this procedure: 734

• truststore 735

o Configuration stores: 736

▪ startup: --- 737

▪ candidate: --- 738

▪ running: trust anchor for LDevIDs (persisted across reboots) 739

▪ intended: trust anchor for LDevIDs (persisted across reboots) 740

o operational: trust anchor for LDevIDs and IDevIDs (not persisted across 741

reboots) 742

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 19

• keystore 743

o Configuration stores: 744

▪ startup: --- 745

▪ candidate: --- 746

▪ running: LDevID-NETCONF credential (persisted across reboots) 747

▪ intended: LDevID-NETCONF credential (persisted across reboots) 748

o operational: LDevID-NETCONF and IDevID credentials (not persisted across 749

reboots) 750

4.2.3.5 Step 5: Using LDevID-NETCONF 751

After step 4 LDevID-NETCONF credential and trust anchor can be used by the IA component 752

for NETCONF-over-TLS according to RFC 7589. This happens as follows: 753

• Trust anchor for LDevID-NETCONF: 754

o Is obtained from the truststore incarnation operational 755

o Is found by its well-known name LDevID-NETCONF inside the LDevID Bag 756

o Is used for sending out the TLS CertificateRequest message 757

o Is used for processing the TLS Certificate message sent by the client 758

• LDevID-NETCONF credential: 759

o Is obtained from the keystore incarnation operational 760

o Is found by its well-known name LDevID-NETCONF 761

o Is used for sending out the TLS Certificate message 762

o Is used for processing specific TLS messages (details depend on the employed 763

cipher suite which is again a subject to the cryptographic algorithm catalogue 764

for IEC/IEEE 60802 [TODO]) sent by the NETCONF client 765

4.2.3.6 Other Processing Steps 766

TODO: discuss further processing steps e.g., reboot and reset -to-factory 767

5 Using the Solution – With Respect To NETCONF/YANG 768

5.1 Message Exchange Protection for NETCONF/YANG 769

TODO: describe message exchange protection of NETCONF/YANG exchanges with TLS as 770

secure transport (text is meant to be a profile of RFC 7589; further profiling is needed if 771

further NETCONF secure transports (e.g. SSH, QUIC) shall also be supported by TSN-IA) 772

TODO: are other secure transports for NETCONF/YANG than TLS in scope of TSN-IA? 773

5.2 Resource Access Authorization for NETCONF/YANG 774

TODO: describe resource access authorization for NETCONF/YANG exchanges (text is 775

meant to be a profile of RFC 8341) 776

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 20

6 Exploiting the Solution – Other Trust Anchors and Credentials 777

6.1 Supply 778

TODO: describe the supply (creating) of local, deployment-specific trust anchors and 779

credentials for other exchanges than NETCONF/YANG by means of NETCONF/YANG (the 780

supply for NETCONF/YANG exchanges by means of NETCONF/YANG is described in 4) 781

6.2 Handling 782

TODO: describe the handling (using/updating/deleting…) of local, deployment-specific 783

trust anchors and credentials for any exchanges by means of NETCONF/YANG. 784

7 Using the Exploitation – Beyond NETCONF/YANG 785

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG 786

TODO: describe how the imprinting solution can be exploited to protect other kinds of 787

TSN-IA defined exchanges 788

7.2 Other Exchanges 789

Using this exploitation is regarded a matter of middleware and application components. 790

This needs to be elaborated by these specifications. It is not detailed by TSN-IA. 791

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 21

Annex A IEEE 802.1AR ‘Secure Device Identity’ 792

A.1 IDevID Objects 793

• Abbreviation for: Initial Device IDentifier 794

• Definition (somewhat rephrased for simplicity): a manufacturer-generated and installed 795

object that is cryptographically bound to the component, and that comprises (see [10] 796

for all applicable details): 797

o An asymmetric private key 798

o An EE certificate which binds the corresponding public key to information about 799

the component and that is stated by its manufacturer. This certificate is assumed 800

to be: 801

▪ Valid eternally (notAfter=99991231235959Z) 802

▪ Have an X.500 subject field (DN) carrying a unique product serial 803

number20. 804

▪ Not self-signed 805

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 806

certificate to the trust anchor (self-signed root CA certificate) of the manufacturer 807

• Quantity: IEEE 802.1AR-2018 allows one component to possess one or more IDevIDs 808

(IEEE 802.1AR-2009 did limit this to one IDevID). 809

• Important: 810

o IDevID issuance and supply is meant to happen once in the lifetime of the 811

component (during its manufacturing and before its shipment). Typically, the 812

IDevID object is never updated or erased. 813

o Since IDevID objects are created at component manufacturing time they can 814

only contain information known at manufacturing time (these items are called 815

‘product master data’ herein) . 816

o System integrators and owner/operators do not have to worry about IDevID 817

object production - they consume IDevIDs only. 818

o Invalidation of an IDevID credential does not (have to) prevent the usage of the 819

component: 820

▪ This only prevents the use of this IDevID object. This affects usages of 821

this IDevID after the invalidation event, not (or not necessarily) earlier 822

usages of this IDevID before its invalidation event. 823

▪ This does not affect the usage of other IDevID credentials - if there are 824

multiple IDevID credential objects for a specific component. 825

A.2 LDevID Objects 826

• Abbreviation for: Locally significant Device IDentifier 827

• Definition (somewhat rephrased for simplicity): a system integrator or owner/operator-828

generated and installed object that is cryptographically bound to the component, and 829

that comprises (see [10] for all applicable details): 830

—————————
20 The serialNumber value shall be unique within the domain of significance that is identified by the issuer name, not

just within the context of precursor DN fields in the subject name

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 22

o An asymmetric private key 831

o An EE certificate which binds the corresponding public key to information about 832

the component and that is stated by its system integrator or owner/operator. This 833

certificate is assumed to be: 834

▪ Not eternal, no [notBefore, notAfter] interval length is suggested 835

▪ Not self-signed 836

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 837

certificate to the trust anchor (self-signed root CA certificate) of the system 838

integrator or owner/operator. 839

• Quantity: IEEE 802.1AR-2009 and 2018 allow one component to possess one or more 840

LDevIDs 841

• Important: 842

o LDevID issuance and supply is meant to happen one or more times during the 843

lifetime of the component (during bootstrapping or even operation phases). The 844

LDevID objects can be updated or erased. A security model is needed to prevent 845

attackers from supplying or managing LDevID objects. 846

o The LDevID objects are created at bootstrapping or even operation time of the 847

component. Hence, they can and shall contain information known when this 848

component is bootstrapped or operated but which is not known when the 849

component is manufactured (this is also called ‘deployment master data’ herein). 850

o Manufacturers do not have to worry about LDevID supply. With respect to 851

LDevIDs their “only” concern is supplying (protected and initially empty) storage 852

and means to support system integrators and owners/operators e.g ., building 853

blocks for cryptographic operations such as random number generation , key pair 854

generation, object signing and validating. 855

o Invalidation of an LDevID credential does not (have to) prevent the usage of the 856

component: 857

▪ This only prevents the use of this LDevID credential. This affects usages 858

of this LDevID credential after the invalidation event, not (or not 859

necessarily) earlier usages of this IDevID before its invalidation event. 860

▪ This does not affect the usage of other LDevID credentials - if there are 861

multiple LDevID credential objects for a specific component . 862

▪ Although this reads equivalent to the corresponding section for IDevIDs, 863

the consequences of a LDevID invalidation are more severe than IDevID 864

invalidation. This is due to following: 865

• LDevIDs should be assumed to be used often (hint: “daily use”) 866

• IDevIDs can be assumed to be used occasionally (hint: “annual 867

use”) 868

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 23

Annex B IETF RFC 6125 869

RFC 6125 (see [6]) is mandated for checking the identity of a NETCONF-over-TLS server by 870

RFC 7589 ‘Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual 871

X.509 Authentication ’ (see [8]). 872

RFC 6125 requires the name of an application service to be (or to be based on) a DNS 873

domain name in one of the following forms: 874

• Traditional domain name: a FQDN with labels constrained to ASCII letter, digits and 875

hyphen (further small-print applies) 876

• Internationalized domain name: a FQDN with at least one Unicode label (further 877

small-print applies) 878

Following ‘actual vs. expected’-matching rules apply for checking the identity of a NETCONF-879

over-TLS server based on their application names: 880

• Actual (FQDN in subjectAltName extension of the EE certificate) is a traditional 881

domain name: case-insensitive ASCII comparison against expected (from address info 882

e.g., request URL) 883

• Actual (FQDN in subjectAltName extension of the EE certificate) is an 884

internationalized domain name: case-insensitive ASCII comparison against expected 885

(from address info e.g., request URL) after performing any U-label to an A-label, cf. 886

RFC 5890 (see [4]) and RFC 5891 (see [5]) for details. 887

• Actual (FQDN in subjectAltName extension of the EE certificate) contains a wildcard in 888

its leftmost label: 889

o “*” always matches e.g., foo.example.com matches *.example.com (does not 890

match foo.example.net or foo.superexample.com) 891

o “<abc>*<xyz>” matches when it matches e.g., foobar.example.com matches 892

foo*.example.com (small-print applies, see RFC 6125) 893

• Actual (CN in subject field [this is an X.500 DN] of the EE certificate) is a traditional 894

domain name: case-insensitive ASCII comparison against expected (from address info 895

e.g., request URL) 896

As a last resort check (if no FQDN can be found in the subjectAltName extension of the EE 897

certificate) these matching rules can be applied to the CN portion of the subject DN value 898

(small-print applies, see RFC 6125). 899

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 24

Annex C Sequence Charts 900

C.1 Post Imprinting Processing Steps 901

Sequence chart for NETCONF-over-TLS exchanges (RFCs 5246, 7589, 8341) once the IA 902

component was equipped for this purpose: 903

 904

C.2 Imprinting Processing Steps 905

Sequence chart for equipping an IA component to participate in NETCONF-over-TLS 906

exchanges: 907

 908

C.2.1 Server Identity Checking Sub-Steps 909

Sequence sub-chart for checking the server identity for NETCONF-over-TLS in case of an IA 910

component that booted in factory default state: 911

V0.3 2021-06-25

Security Slice IEC/IEEE 60802 Page 25

 912

C.2.2 Client Identity Verification Sub-Steps 913

Sequence sub-chart for verifying the client identity for NETCONF-over-TLS in case of an IA 914

component that booted in factory default state: 915

 916

