
V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 2

IEC/IEEE 60802 Security Slice 1

 2

 3

Contributors 4

Fischer, Kai <kai.fischer@siemens.com> 5

Furch, Andreas <andreas.furch@siemens.com> 6

Pfaff, Oliver <oliver.pfaff@siemens.com> 7

Pössler, Thomas <thomas.poessler@siemens.com> 8

Steindl, Günter <guenter.steindl@siemens.com> 9

 10

Abstract 11

The purpose of this text is to establish a common understanding of TSN-IA security. An 12

incremental procedure is applied in bottom-up style: 13

i. First increment (V0.1 and V0.2, prior versions): establishing TLS with IA components 14

(in TLS server role) that boot with factory defaults ; provides chapters 1 to 4.1 15

ii. Second increment (V0.3, prior version): equipping IA components with trust anchors 16

and credentials for NETCONF-over-TLS; provides chapter 4.2 17

iii. Third increment (V0.4, this version): securely using IA components with 18

NETCONF/YANG exchanges; provides chapter 5 and Annex D 19

iv. Forth increment (V0.5, later): equipping IA components with trust anchors and 20

credentials for other exchanges (non-NETCONF/YANG); will provide chapter 6 21

v. Fifth increment (V0.6, later): securely using IA components with other exchanges 22

(non-NETCONF/YANG); will provide chapter 7 23

Elaborations of this text provide a skeleton for the security profile text in D1.3 of TSN Profile 24

for Industrial Automation. It also provides a background for describing the security use cases. 25

Log 26

v0.1 2021-05-21 Initial draft 27

v0.2 2021-06-11 Editorial changes, document structure refined, 28

elaboration on the bootstrapping challenge (chapter 4.1) 29

and corresponding sequence charts (Annex C) 30

v0.3 2021-06-25 Elaboration on the imprinting challenge (chapter 4.2) 31

v0.4 2021-07-09 Resource access authorization and message exchange 32

protection and for NETCONF-over-TLS (chapter 5, 33

Annex D) 34

Contents 35

1 Preconditions .. 5 36

2 Goal .. 6 37

3 Identifying the Challenges ... 6 38

3.1 Imprinting Challenge ... 6 39

3.2 Bootstrapping Challenge ... 7 40

3.2.1 Server Identity Checking Challenge ... 7 41

3.2.2 Client Identity Verification Challenge ... 7 42

3.2.3 Client Authorization Challenge ... 8 43

4 Solving the Challenges .. 8 44

4.1 Bootstrapping Challenge ... 8 45

4.1.1 Server Identity Checking Challenge ... 8 46

4.1.2 Client Identity Verification Challenge ... 9 47

4.1.3 Client Authorization Challenge ... 10 48

mailto:kai.fischer@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:oliver.pfaff@siemens.com
mailto:thomas.poessler@siemens.com
mailto:guenter.steindl@siemens.com

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 3

4.2 Imprinting Challenge ... 10 49

4.2.1 Use Cases ... 10 50

4.2.2 Design ... 11 51

4.2.3 Illustration ... 17 52

5 Using the Solution – With Respect To NETCONF/YANG .. 20 53

5.1 Resource Access Authorization for NETCONF/YANG ... 20 54

5.1.1 Access Control Mechanism .. 20 55

5.1.2 Access Control Model .. 21 56

5.1.3 NACM Access Control Rules ... 22 57

5.1.4 NETCONF Usernames ... 25 58

5.1.5 Processing Pipeline ... 26 59

5.2 Message Exchange Protection for NETCONF/YANG ... 30 60

5.2.1 TLS Profile .. 30 61

6 Exploiting the Solution – Other Trust Anchors and Credentials 31 62

6.1 Supply .. 31 63

6.2 Handling ... 31 64

7 Using the Exploitation – Beyond NETCONF/YANG .. 32 65

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG ... 32 66

7.1.1 Resources Access Authorization .. 32 67

7.1.2 Message Exchange Protection .. 32 68

7.2 Other Exchanges ... 32 69

Annex A IEEE 802.1AR ‘Secure Device Identity’ ... 33 70

A.1 IDevID Objects.. 33 71

A.2 LDevID Objects ... 33 72

Annex B IETF RFC 6125 ... 35 73

Annex C Sequence Charts .. 36 74

C.1 Post Imprinting Processing Steps.. 36 75

C.2 Imprinting Processing Steps.. 36 76

C.2.1 Server Identity Checking Sub-Steps .. 36 77

C.2.2 Client Identity Verification Sub-Steps ... 37 78

Annex D TLS Protocol Versions .. 38 79

 80

References 81

[1] IETF RFC 4949: Internet Security Glossary, Version 2, 2007 82

[2] IETF RFC 5246: The Transport Layer Security (TLS) Protocol Version 1.2, 2008 83

[3] IETF RFC 5280: Internet X.509 Public Key Infrastructure Certificate and Certificate 84

Revocation List (CRL) Profile, 2008 85

[4] IETF RFC 5890: Internationalized Domain Names for Applications (IDNA): Definitions 86

and Document Framework, 2010 87

[5] IETF RFC 5891: Internationalized Domain Names in Applications (IDNA): Protocol, 88

2010 89

[6] IETF RFC 6125: Representation and Verification of Domain-Based Application Service 90

Identity within Internet Public Key Infrastructure Using X.509 (PKIX) Certificates in the 91

Context of Transport Layer Security (TLS), 2011 92

[7] IETF RFC 6241: Network Configuration Protocol (NETCONF), 2011 93

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 4

[8] IETF RFC 7589: Using the NETCONF Protocol over Transport Layer Security (TLS) 94

with Mutual X.509 Authentication, 2015 95

[9] IETF RFC 7950: The YANG 1.1 Data Modeling Language, 2016 96

[10] IEEE 802.1AR-2018: IEEE Standard for Local and Metropolitan Area Networks–Secure 97

Device Identity, 2018 98

[11] IETF RFC 8341: Network Configuration Access Control Model, 2018 99

[12] IETF RFC 8342: Network Management Datastore Architecture (NMDA), 2018 100

[13] IETF RFC 8366: A Voucher Artifact for Bootstrapping Protocols, 2018 101

[14] IETF RFC 8572: Secure Zero Touch Imprinting (SZTP), 2019 102

[15] IETF RFC 8995: Bootstrapping Remote Secure Key Infrastructure (BRSKI) , 2021 103

[16] IETF NETCONF WG: A YANG Data Model for a Truststore (draft-ietf-netconf-trust-104

anchors-15), Internet Draft, Work in Progress, 2021 105

[17] IETF NETCONF WG: A YANG Data Model for a Keystore (draft-ietf-netconf-keystore-106

22.html), Internet Draft, Work in Progress, 2021 107

[18] IETF NETCONF WG: YANG Data Types and Groupings for Cryptography (draft-ietf-108

netconf-crypto-types-20.html), Internet Draft, Work in Progress, 2021 109

Abbreviations 110

AEAD Authenticated Encryption with Added Data 111

AES Advanced Encryption Standard 112

ASCII American Standard Code for Information Interchange 113

ASN Abstract Syntax Notation 114

CA Certification Authority 115

CBC Cipher Block Chaining 116

CMS Cryptographic Message Syntax 117

CN Common Name (X.500) 118

CRL Certificate Revocation List 119

CRUDX Create Read Update Delete eXecute 120

CSR Certificate Signing Request 121

DAC Discretionally Access Control 122

DER Distinguished Encoding Rules 123

DH Diffie-Hellman 124

DHE Diffie-Hellman Ephemeral 125

DN Distinguished Name (X.500) 126

DNS Domain Name Service 127

DSA Digital Signature Algorithm 128

EC Elliptic Curve 129

ECC Elliptic Curve Cryptography 130

EE End Entity 131

GCM Galois Counter Mode 132

HMAC Keyed-Hashing for Message Authentication 133

FQDN Fully Qualified Domain Name 134

HW HardWare 135

IA Industrial Automation 136

IA-ME Industrial Automation Management Entity 137

IDevID Initial Device IDentifier 138

LDevID Locally significant Device Identifier 139

MAC Message Authentication Code or Mandatory Access Control (security) 140

Media Access Control (networking) 141

NACM Network configuration Access Control Model 142

NETCONF NETwork CONFiguration 143

NMDA Network Management Datastore Architecture 144

OCSP Online Certificate Status Protocol 145

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 5

OoB Out-of-Band 146

PEM Privacy Enhanced Mail 147

PFS Perfect Forward Secrecy 148

PII Personally Identifiable Information 149

PKCS Public Key Cryptography Standards 150

RBAC Role-Based Access Control 151

RSA Rivest Shamir Adleman 152

SAN (or san) Subject Alternative Name 153

SHA Secure Hash Algorithm 154

SZTP Secure Zero Touch Provisioning 155

TDME TSN Domain Management Entity 156

TLS Transport Layer Security 157

TOFU Trust On First Use 158

TTP Trusted Third Party 159

URI Uniform Resource Identifier 160

URL Uniform Resource Locator 161

URN Uniform Resource Name 162

WG Working Group 163

YANG Yet Another Next Generation 164

1 Preconditions 165

Following preconditions are assumed: 166

• IA systems are equipped with system components from multiple manufacturers. 167

• Each individual system component has a housing that carries an end station or bridge 168

component. 169

• By the time a system component is shipped by its manufacturer, it is assumed to 170

comprise the following as part of its factory defaults: 171

o IDevID credential object: defined by IEEE 802.1AR, see [10], to be further 172

profiled by IEC/IEEE 60802. This object encompasses1: 173

▪ Private key 174

▪ End entity (EE) certificate (plus intermediate CA certificates) containing 175

product master data identifying the physical instance of this 176

component according to manufacturer knowledge e.g., product serial 177

number and in an eternal manner. 178

Note: IDevID EE certificates cannot contain deployment master data e.g., 179

application name(s) or IP address(es). 180

o Corresponding trust anchor: also defined by IEEE 802.1AR, see [10]. This 181

object represents the manufacturer certification authority (CA), often in the 182

form of a self-signed CA certificate. It is used to initialize the validation of 183

certification paths of peers, see [3]. 184

o Secure element component: generic or dedicated HW (the exact form factor is 185

out-of-scope for IEC/IEEE 60802) providing: 186

▪ Persistent storage for keys and credentials esp. IDevID/LDevID 187

credentials and corresponding trust anchors (see below) 188

▪ Execution environment for these keys and credential 189

Note: this is also known as DevID module in IEEE 802.1AR, see [10] 190

—————————
1 Hint: IDevID EE certificates can be thought of as “birth certificates” - they contain data that is known by the time-

of-birth.

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 6

• System components that are deployed in a production cell/site are equipped with an IP 191

address. 192

2 Goal 193

A system component (that fulfills the prerequisites above) shall participate in protected 194

network configuration. Assumptions: 195

• Network configuration uses NETCONF/YANG according [7] and [9] 196

• Secure transport for NETCONF is TLS according [8] 197

• The system component acts in (NETCONF and TLS) server role – its network 198

configuration happens according to a push supply 199

Using NETCONF-over-TLS is straightforward provided the NETCONF-over-TLS server (i.e., 200

the to-be-managed system component) possesses: 201

• A credential that matches the requirements in sections 6 of RFCs 7589 (see [8]) resp. 202

RFC 6125 (see [6]): the component’s FQDN has to be part of the subjectAltName 203

extension in its EE certificate 204

• Trust anchor(s) that allow to validate the EE certificates (plus intermediate CA 205

certificates) of its NETCONF-over-TLS clients. 206

Important: these objects are not available when the to-be-managed system component boots 207

with its factory defaults. This text addresses this challenge as follows: 208

• Chapters 3 and 4 describe the equipment of IA components with credentials and trust 209

anchors required for NETCONF-over-TLS. This applies resp. happens when IA 210

components boot with factory defaults. 211

• Chapter 5 describes the secure management of IA components with NETCONF/YANG 212

using TLS as secure transport. This applies resp. happens after IA components were 213

equipped with credentials and trust anchors for NETCONF-over-TLS (explained in 214

chapters 3 and 4). 215

• Chapters 6 describes the equipment of IA components with credentials and trust 216

anchors required for other exchanges than NETCONF-over-TLS. This applies resp. 217

happens after IA components were equipped with credentials and trust anchors f or 218

NETCONF-over-TLS (explained in chapters 3 and 4). 219

• Chapter 7 describes the secure employment of IA components in other exchanges 220

than NETCONF/YANG. This applies resp. happens after IA components were 221

equipped with credentials and trust anchors for other exchanges than NETCONF-over-222

TLS (explained in chapter 6). 223

3 Identifying the Challenges 224

3.1 Imprinting Challenge 225

Supply the LDevID-NETCONF credential and corresponding trust anchor in a secure manner 226

to a system component that is booting from factory default state2 and that shall be managed 227

by means of NETCONF-over-TLS. Notes: 228

—————————
2 The imprinting of an IA component with its LDevID-NETCONF credential as well as the corresponding trust anchor

shall happen once when booting from factory default state.

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 7

• The shorthand term LDevID-NETCONF is used for an LDevID3 credential according to 229

IEEE 802.1AR (see [10]) which also matches the requirements that are set forth in 230

sections 6 of RFC 7589 (see [8]) resp. RFC 6125 (see [6]). 231

• The specific term ‘imprinting’ is used for equipping IA components with the LDevID-232

NETCONF credential and corresponding trust anchor instead of the generic term 233

‘provisioning’ (can refer to any supply, is not limited to credentials and trust anchors) 234

Suggested approach for solving this imprinting challenge4: use NETCONF-over-TLS for 235

supplying the LDevID-NETCONF credential and corresponding trust anchor. The LDevID-236

NETCONF credential and corresponding trust anchor supply happens in NETCONF payload 237

according to a YANG model. 238

3.2 Bootstrapping Challenge 239

When this imprinting happens the to-be-provisioned objects cannot be simultaneously used in 240

the TLS layer5. Other credentials and trust anchors must be used in the TLS layer when 241

performing NETCONF-over-TLS exchanges for imprinting the LDevID-NETCONF credential 242

and corresponding trust anchor. 243

Suggested approach for solving this bootstrapping challenge: use the IDevID credential and 244

corresponding trust anchor on TLS level when doing the NETCONF-over-TLS exchanges to 245

provision the LDevID-NETCONF credential and corresponding trust anchor. 246

This approach results in several sub-challenges that are identified below. 247

3.2.1 Server Identity Checking Challenge 248

As a client that is performing this imprinting, how to check the server identity before supplying 249

sensitive resources to it (the LDevID-NETCONF credential)? 250

Note: the RFC 7589 (see [8]) resp. RFC 6125 (see [6]) matching rule is geared towards server 251

identity checking in a post imprinting phase (“all is setup”). When RFC 7589 resp. RFC 6125 252

matching would be used during the credential imprinting phase, it would prohibit the supply. 253

3.2.2 Client Identity Verification Challenge 254

As a to-be-provisioned server (the IA component), how to check the client identity before 255

accepting critical changes of the own state (the trust anchor that allows to validate the 256

LDevID-NETCONF and other EE certificates presented by peer entities)? 257

Note: clients that call the IA component for doing the imprinting must be assumed to be 258

equipped with credentials from an authority that is not yet known by the to-be-provisioned IA 259

component which is booting from factory default.6 260

—————————
3 In general, LDevID credentials encompass:

• Private key

• EE certificate containing deployment master data identifying the component according to deployment
knowledge e.g., application name(s) or IP address(es) and in a time-limited manner.

Hint: LDevID EE certificates can be thought of as “driving licenses” - they contain info that is unknown when “birth
certificates” are issued e.g., driving license classes

4 NETCONF SZTP in [14] is no (full) solution for this imprinting challenge: it does not cover the credential port ion.
The trust anchor portion is covered but SZTP uses pull or physical push (Removeable Storage)

5 The TLS handshake that demands the objects happens before the NETCONF application exchange .

6 Albeit RFC 5246 is not explicit on what must happen when certification path validation fails, it is fair to expect the
vast majority of server-side implementations to interrupt a TLS handshake when seeing a client certificate that
cannot be validated with the already configured trust anchors.

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 8

3.2.3 Client Authorization Challenge 261

As a to-be-provisioned server (the IA component), how to determine whether the current client 262

is authorized7 to perform the imprinting of LDevID-NETCONF credential and trust anchor? 263

Note: RFC 8341 (NACM, see [11]) is geared towards authorizing operations in the post 264

imprinting phase (“all is setup”). When RFC 8341 authorization would be used during the 265

credential and trust anchor imprinting phase, it would prohibit this supply. 266

4 Solving the Challenges 267

4.1 Bootstrapping Challenge 268

Using the mechanisms described below, the bootstrapping part of the imprinting challenge 269

can be solved. 270

4.1.1 Server Identity Checking Challenge 271

The IA component exposes a NETCONF service over TLS that is using its IDevID credential 272

for authenticating itself while booting from factory default state and to be imprinted with an 273

LDevID-NETCONF credential. 274

This provides following actuals to the imprinting client for checking the server: 275

• The issuer field in the IDevID EE certificate. IEEE 802.1AR (see [10]) requires this 276

value to present a domain of uniqueness for the product serial number . 277

• The product serial number value from the IDevID EE certificate. IEEE 802.1AR 278

requires this value to be provided in a serialNumber attribute8 of the subject field. 279

Before imprinting the LDevID-NETCONF credential, the imprinting client checks the actual 280

server identity that is stated by the IA component on TLS level by matching against: 281

• A list of accepted (or blocked) manufacturers 282

Note: matching between legal registration or common names on root level9 and X.500 283

name on leaf level10 representations. The caveat is: X.500 issuer names are 284

mandated for X.509 certificates but uncommon outside the PKI domain. TODO: 285

discussion is needed if a matching shall be specified in TSN-IA (normative text) or 286

whether TSN-IA just provides some background (informative text). 287

• Per accepted manufacturer, a list of accepted (or blocked) product instances by their 288

product serial number incl. wildcards 289

Details of how this matching happens depends on the implementation of the client that 290

performs this imprinting. For example: 291

• A human-operated imprinting client might trigger a dialogue by displaying the actuals 292

and asking for an “Okay or not okay?” input by its operator before proceeding. The 293

operator then performs this checking OoB - from the perspective of the client. 294

• An automatedly operating imprinting client might demand to be (pre-)configured with 295

input about the “expected” system components and performs an automated checking. 296

—————————
7 There is also a post-imprinting client authorization challenge (not considered here): as an already provisioned

server, how to determine whether a client is authorized to perform its network configuration actions?

8 This attribute is identified by the OID 2.5.4.5 which is defined by X.520 (see RFC 4519) .

9 E.g. “Antarctica; Super-Duper-Manufacturer, Inc.; Place of Registration: McMurdo, AQ; Registered
Office Address: 77, Mt. Erebus Drive, McMurdo, AQ; Registration Ref.: XY-4711”

10 E.g. “C=AQ,O=Super-Duper-Manufacturer,OU=Industrial Automation,CN=IDevID Issuing CA V1.0”

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 9

Items to follow-up in a discussion with IEEE Security WG (regarded a TODO): Home of 297

product serial number (subject name (as serial number attribute) vs. subject alternative 298

name). Consideration of industry-wide unique product instance identifiers in addition (or 299

instead) to the current product instance identifiers that are (at most) manufacturer-wide 300

unique 301

4.1.2 Client Identity Verification Challenge 302

The IA component exposes a NETCONF service over TLS that is using its manuf acturer 303

installed trust anchors for authenticating clients while booting from factory default state and to 304

be imprinted with a trust anchor (that allows to validate LDevID-NETCONF and other EE 305

certificates presented by peer entities) . 306

This (and only this) endpoint performs a “provisional accept of client cert”11 according 307

following procedure: 308

1. Challenge the client for TLS client authentication (required by RFC 7589, see [8]) by 309

sending a CertificateRequest message (required by RFC 5246, see [2]) with an 310

empty certificate_authorities entry 311

2. Perform certification path validation according to RFC 5280 (see [3]) for the contents 312

of the client’s Certificate message (fail if the certificate list in this message is 313

empty) 314

3. Provisionally accept a failing certification path validation when the reason is ‘no 315

matching trust anchor ’ (and only this reason) and proceed with the TLS exchanges. 316

4. Expect the client to send a trust anchor in the NETCONF application payload over this 317

provisionally accepted TLS session (nothing else) . This shall happen in one of two 318

forms (see chapter 4.2 for further details of this supply): 319

a. Plain form: a raw X.509 CA certificate as part of a YANG object. Only syntax 320

and simple hygiene checks are possible in this case, no actual cryptographic 321

checks. This object is accepted when syntax and hygiene checks are passed. 322

This provides a TOFU model. 323

b. Protected form: an X.509 CA certificate that is embedded in a voucher (RFC 324

8366, see [13]) as part of a YANG object. The voucher is a signed object that 325

can be cryptographically checked with the manufacturer-provided trust 326

anchors. This object is accepted when cryptographic as well as syntax and 327

hygiene checks are passed. 328

TODO: elaborate on delegation models, voucher object flavors/details 329

(with/without nonce etc) 330

5. If the trust anchor in the NETCONF application payload was accepted, then redo the 331

certification path validation using this object (see step 2). 332

6. If this revalidation is successful, then the client identity is successfully established. 333

7. If client identity is established, perform the client authorization (see below): 334

a. If authorized: persist the provisioned trust anchor and use it for subsequent 335

certification path validation operations 336

b. Else: refuse the supplied trust anchor 337

—————————
11 This is a mirrored version of the “provisional accept of server cert” in RFC 8995 (see [15])

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 10

4.1.3 Client Authorization Challenge 338

The authorization of clients for the task of imprinting the LDevID-NETCONF credential and the 339

corresponding trust anchor when booting from factory default state is subject to the security 340

model for imprinting the trust anchor: 341

• Plain form: in the TOFU case, the to-be-provisioned server (the IA component) has no 342

reasonable means to distinguish the following cases: 343

o Client is authenticated and authorized for doing this imprinting 344

o Client is authenticated but not authorized for doing this imprinting 345

Hence in the TOFU model all authenticated clients are accepted as authorized for 346

doing the imprinting of the LDevID-NETCONF credential and the corresponding trust 347

anchor. Only contextual checks such as “once only when bootstrapping from factory 348

default” (first-one-wins) are feasible. TODO: discuss whether such contextual checks 349

shall be described in a normative way 350

• Protected form: in the voucher case, the details of an authorization model are up to 351

the manufacturer as voucher object production is done (or delegated) by the 352

manufacturer and voucher object consumption is done by a product of this 353

manufacturer. This allows to support various models including: 354

o Any client of any owner/operator organization can perform this imprinting – 355

voucher is not bound to owner/operator organization and/or their clients 356

o Any client of a dedicated owner/operator organization can perform this 357

imprinting – voucher is bound to an owner/operator but not to their clients 358

o Only dedicated clients of a dedicated owner/operator organization can perform 359

this imprinting – voucher is bound to an owner/operator organization as well as 360

to dedicated clients 361

Detailing such bindings is out-of-scope for IEC/IEEE 60802. 362

4.2 Imprinting Challenge 363

4.2.1 Use Cases 364

• imprintTrustAnchor: imprint a local, deployment-specific trust anchor12 (LDevID) 365

to an IA component that is booting with factory defaults. Subcases: 366

o Trust anchor is provided in plain form13 (TOFU) e.g., a X.509 certificate in 367

enveloped form without protection (such as: degenerated CMS SignedData, 368

“certs-only” [no signature], RFC 5652) or in raw form (ASN.1 DER binary, opt. 369

Base64-encoded and wrapped with PEM markers) 370

o Trust anchor is provided in protected form14 e.g., a X.509 certificate in 371

enveloped form with protection (such as: CMS SignedData [not degenerated] 372

or a voucher object [RFC 8366]) 373

• imprintCredential: imprint a local, deployment-specific credential15 (LDevID) to 374

an IA component that is booting with factory defaults. Subcases: 375

—————————
12 An X.509 CA certificate that is used as an input for certification path validation (see section 6 of RFC 5280)

13 The verification of a self-signed root CA certificate only provides the integrity of this object, not its authenticity. In
other words: anybody can issue a self-signed root CA certificate object for which the signature validation works,
that appears to represent e.g., the United Nations but where its private key is controlled by another entity.

14 To establish authenticity for self-signed root CA certificate additional means are needed. Embedding self-signed
root CA certificates into RFC 8366 voucher objects provides one means to establish that.

15 A private key and the corresponding X.509 EE certificate, optionally plus intermediate sub-CA certificates

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 11

o IA component-external key generation 376

o IA component-internal key generation 377

TODO: imprintUsernames, imprintUserRules, see figures in sections C.1 (required 378

objects) vs. C.2 (available objects when booting with factory defaults); deferred from V0.3 for 379

complexity reasons (imprintTrustAnchor/imprintCredential occupy ca. 10 text 380

pages already) 381

Note: further use cases for processing local, deployment-specific trust anchors and 382

credentials do also exist. They are identified and their solution is described in section 6.2. 383

4.2.2 Design 384

4.2.2.1 Overview 385

The solution for the imprinting cases 4.2.1 uses messages, data models and data stores 386

according to RFC 6241 (NETCONF), RFC 7950 (YANG) and RFC 8342 (NMDA). 387

The following adaptation of figure in section 1.1 of RFC 6241 provides a conceptual 388

partitioning that is used to describe the design of the imprinting solution: 389

 Layer Artifacts 390

 +-------------------+ +--------------------------------------+ 391

 (4) | Content | | Credentials, trust anchors | 392

 +-------------------+ +--------------------------------------+ 393

 | | 394

 +-------------------+ +--------------------------------------+ 395

 (3) | Operations | | <edit-config>, <commit> | 396

 +-------------------+ +--------------------------------------+ 397

 | | 398

 +-------------------+ +--------------------------------------+ 399

 (2) | Messages | | <rpc>, <rpc-reply> | 400

 +-------------------+ +--------------------------------------+ 401

 | | 402

 +-------------------+ +--------------------------------------+ 403

 (1) | Secure Transport | | TLS | 404

 +-------------------+ +--------------------------------------+ 405

4.2.2.2 Secure Transport 406

RFC 7589 describes the secure transport for NETCONF/YANG exchanges using TLS. The 407

imprinting cases 4.2.1 require specific processing steps that are not covered by RFC 7589. 408

Generalizations of RFC 7589 for the imprinting cases 4.2.1 are described in section 4.1. 409

4.2.2.3 Messages 410

RFC 6241 defines the messages in NETCONF/YANG exchanges for the imprinting cases 411

4.2.1. 412

4.2.2.4 Operations 413

Following NETCONF operations are used for the imprinting cases 4.2.1: 414

• imprintTrustAnchor: <edit-config> and <commit> (see 4.2.3 for details) 415

• imprintCredential: <edit-config> and <commit> (see 4.2.3 for details) 416

4.2.2.5 Content 417

Following YANG modules are used for the imprinting cases 4.2.1 as well as to access LDevID 418

and IDevID credentials and trust anchors: 419

• ietf-truststore (see [16]): YANG module for trust anchor objects 420

• ietf-keystore (see [17]): YANG module for credential objects 421

https://datatracker.ietf.org/doc/html/rfc4741#section-1.1

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 12

RFC 8342 defines the handling of configuration (<startup>, <candidate>, <running>, 422

<intended>) as well as operation state data stores (<operational>). This framework also 423

applies to objects in ietf-truststore and ietf-keystore modules as illustrated by 424

following adaptation of figure 2 in RFC 8342: 425

 +-------------+ +-----------+ 426

LDevID ➔ | <candidate> |<---+ +--->| <startup> | 427

 +-------------+ | | +-----------+ 428

 | | | | 429

 | +-----------+ | 430

 +-------->| <running> |<--------+ 431

 +-----------+ 432

 | 433

 v 434

 +------------+ 435

 | <intended> | 436

 +------------+ 437

 | 438

 dynamic | +-- learned configuration 439

 configuration | +-- system configuration 440

 datastores -----+ | +-- default configuration 441

 | | | 442

 v v v 443

 +---------------+ 444

 | <operational> | <-- system state  IDevID 445

 +---------------+ 446

4.2.2.5.1 Trust Anchors 447

Trust anchors are accessed by the truststore container of the ietf-truststore module 448

([16] and https://www.yangcatalog.org/yang-search/yang_tree/ietf-truststore@2021-05-18): 449

• This container can hold 0..n CA trust anchors (from LDevID and IDevID domains) 450

• Individual CA certificate objects in the truststore are 451

o Identified by their name. Well-known names (an enumeration defined by 452

IEC/IEEE 60802) shall be used to distinguish individual items. 453

o Represented as a data object of type “trust-anchor-cert-cms” (see [18]) 454

• To authenticate other system entities e.g. TDMEs, an IA component uses the 455

truststore incarnation operational. 456

• For LDevID trust anchor imprinting the truststore incarnation candidate is 457

used16. 458

• RFC 8342 specifies the transition from candidate to operational. 459

4.2.2.5.2 Credentials 460

Credentials are accessed by the keystore container of the ietf-keytstore module ([17] 461

and https://www.yangcatalog.org/yang-search/yang_tree/ietf-keystore@2021-05-18): 462

• This container can hold 0..n credential objects (from LDevID and IDevID domains) 463

• Individual credential objects in keystore are 464

o Identified by their name. Well-known names (an enumeration defined by 465

IEC/IEEE 60802) shall be used to distinguish individual items. 466

—————————
16 IDevID trust anchor imprinting is out-of-scope for IEC/IEEE 60802

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 13

o Their certificate portion is represented as a data object of type “end-entity-cert-467

cms” (see [18]) 468

• To authenticate itself against other system entities e.g., TDMEs, an IA component 469

uses the keystore incarnation operational. 470

• For LDevID credential imprinting phase the keystore incarnation candidate is 471

used17. 472

• RFC 8342 specifies the transition from candidate to operational. 473

4.2.2.5.3 Prototype Messages 474

4.2.2.5.3.1 Imprint Trust Anchor 475

4.2.2.5.3.1.1 Plain Form 476

An example message for writing a trust anchor to the candidate configuration (see [16]): 477

<rpc message-id="001" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 478

 <edit-config> 479

 <target> 480

 <candidate/> 481

 </target> 482

 <config> 483

 <truststore xmlns=”urn:ietf:params:xml:ns:yang:ietf-truststore”> 484

 <certificate-bags> 485

 <certificate-bag> 486

 <name>LDevID Bag</name> 487

 <certificate> 488

 <name>LDevID-NETCONF</name> 489

 <cert-data>X509CaCertificateInPlainEnvelope</cert-data> 490

 </certificate> 491

 </certificate-bag> 492

 </certificate-bags> 493

 </truststore> 494

 </config> 495

 </edit-config> 496

</rpc> 497

 498

This prototype uses following specific items: 499

• message-id attribute: specific value but nothing special (could be any other value in 500

the allowed value range) 501

• name values: specific value with a special purpose (well -known value from an 502

IEC/IEEE 60802-specified enumeration to identify the scope of the given object). 503

• cert-data value: specific value of type “trust-anchor-cert-cms” providing a CA 504

certificate enveloped in Base64-encoded CMS SignedData in degenerated form “certs-505

only” (no signature value) but nothing special (could be any other value in the allowed 506

range) 507

TODO: generalize from single to multiple trust anchors for different purposes and domains. 508

Also consider the naming concept in context of these multiple purposes and domains 509

4.2.2.5.3.1.2 Protected Form 510

A proposal for an example message for writing a protected trust anchor to the candidate 511

configuration (not yet covered by [16]): 512

<rpc message-id="001” xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 513

 <action xmlns="urn:ietf:params:xml:ns:yang:1"> 514

 <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-515

usage"> 516

 <asymmetric-key> 517

 <name>LDevID-NETCONF</name> 518

—————————
17 IDevID credential imprinting is out-of-scope for IEC/IEEE 60802

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 14

 <consume-voucher xmlns="urn:iec_ieee:tsn-ia:security"> 519

 <voucher-data>rfc8366Voucher</voucher-data> 520

 </consume-voucher> 521

 </asymmetric-key> 522

 </asymmetric-keys> 523

 </action> 524

</rpc> 525

 526

This prototype uses following specific items: 527

• message-id attribute: as above 528

• name value: as above 529

• xmlns value: urn:iec_ieee:tsn-ia:security refers to an own namespace for 530

TSN-IA security for following elements: 531

o consume-voucher: specific action to trigger the IA component to validate an 532

RFC 8366 voucher object and store i t the candidate configuration (if okay) 533

o voucher-data: specific element providing a CA certificate in protected form. 534

 Important: using an own namespace is just an interim (➔ contribute to IETF) 535

 536

Note: this proposal utilizes voucher object as specified by RFC 8366. An alternative form 537

factor for the protected imprinting of trust anchors could be CMS SignedData (non-538

degenerated form) as specified in RFC 5652 (not shown above). 539

 540

Open issues: 541

• Should 60802 support the imprinting of trust anchors in protected form (in addition to 542

plain form aka TOFU) 543

• If yes: should this be based on RFC 8366 objects (aka vouchers) and/or CMS 544

SignedData (non-degenerated form) 545

• If yes: revisit resp. align the above rough-upfront syntax proposal to carry trust 546

anchors in protected form. Instead of an action this could also take the form of a 547

feature e.g. ‘protected-trust-anchor’ (or ‘protected-certificate’ in addition to ‘certificate’) 548

• When done: make a proposal towards IETF to obviate a need for 60802-specific 549

elements 550

4.2.2.5.3.2 Imprint Credential 551

4.2.2.5.3.2.1 External Key Generation 552

An example message for writing a credential with externally generated key pair to the 553

candidate configuration (see [17]): 554

<rpc message-id="001" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 555

 <edit-config> 556

 <target> 557

 <candidate/> 558

 </target> 559

 <config> 560

 <keystore xmlns=”urn:ietf:params:xml:ns:yang:ietf-keystore” 561

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto- 562

 types"> 563

 <asymmetric-keys> 564

 <asymmetric-key> 565

 <name>LDevID-NETCONF</name> 566

 <public-key-format>ct:subject-public-key-info-format 567

 </public-key-format> 568

 <public-key>base64EncodedPubKey</public-key> 569

 <private-key-format>TODO</private-key-format> 570

 <cleartext-private-key>base64EncodedPrivKey 571

 </cleartext-private-key> 572

 <certificates> 573

 <certificate> 574

 <name>EE Certificate</name> 575

 <cert-data>X509EeCertificateAndPathInEnvelope</cert-576

data> 577

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 15

 </certificate> 578

 </certificates> 579

 </asymmetric-key> 580

 </asymmetric-keys> 581

 </keystore> 582

 </config> 583

 </edit-config> 584

</rpc> 585

TODO: generalize from single to multiple credentials for different purposes and domains. Also 586

consider the naming concept in context of these multiple purposes and domains 587

 588

This prototype uses following specific items: 589

• message-id attribute: as above 590

• name values: as above 591

• private-key-format value: dedicated value with a specific purpose; refers to the 592

type and structure of a private key. Details depend on [18] and the cryptographic 593

algorithm catalogue for TSN-IA (TBD). 594

• cleartext-private-key value: the private key in plain form18 595

• public-key value: the corresponding public key (also contained as 596

SubjectPublicKeyInfo in the corresponding EE certificate) 597

• cert-data values: specific value of type “end-entity-cert-cms” providing an EE 598

certificate and its intermediate CA certificate chain enveloped in Base64-encoded 599

CMS SignedData in degenerated form (no signature value) but nothing special (could 600

be any other value in the allowed range) 601

4.2.2.5.3.2.2 Internal Key Generation 602

Example messages for writing a credential with internally generated key pair to the 603

candidate configuration. This subcase uses two exchanges. 604

 605

Exchange 1: trigger the action "generate-certificate-signing-request" (see [18]) 606

 607

Request: 608

<rpc message-id="001” xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 609

 <action xmlns="urn:ietf:params:xml:ns:yang:1"> 610

 <asymmetric-keys xmlns="http://example.com/ns/example-crypto-types-611

usage"> 612

 <asymmetric-key> 613

 <name>LDevID-NETCONF</name> 614

 <generate-certificate-signing-request> 615

 <csr-info>base64EncodedPkcs10CertificationRequestInfo</csr-info> 616

 </generate-certificate-signing-request> 617

 </asymmetric-key> 618

 </asymmetric-keys> 619

 </action> 620

</rpc> 621

This request prototype uses following specific items: 622

• message-id attribute: as above 623

• name value: as above 624

• csr-info value: specific value of type Base64-encoded PKCS#10 625

CertificationRequestInfo (RFC 2986)19 but nothing special (be any other value in 626

the allowed range) 627

—————————
18 The alternative is: <encrypted-private-key>. The option <cleartext-private-key> was picked to make a first

description as simple as possible. This is not meant as the recommended or preferred form. Subsequent versions
will elaborate on supported forms and their recommendation level for TSN-IA.

19 Note: the CertificationRequestInfo child element SubjectPublicKeyInfo contains algorithm information and

actual public key. The public key is empty when triggering the action "generate-certificate-signing-request"

https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.html#name-the-generate-certificate-si
https://www.ietf.org/archive/id/draft-ietf-netconf-crypto-types-20.html#name-the-generate-certificate-si

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 16

Caveat: what is the correct interpretation of section-3.2 of [18] ("No Support for Key 628

Generation")? A clarification is needed 629

The IA component internal processing steps that are triggered by this action are: 630

1) Receive and process the NETCONF request message (see above) 631

2) Base64-decode the <csr-info> value and parse it as a PKCS#10 632

CertificationRequestInfo object 633

3) Randomly generate a key pair for the specified algorithm (this information is provided as 634

part of SubjectPublicKeyInfo in the PKCS#10 CertificationRequestInfo) 635

4) Internally store the private key together with its metadata e.g., algorithm information, 636

<name> value in a secure manner 637

5) Put the public key into the (parsed) PKCS#10 CertificationRequestInfo 638

6) Serialize the PKCS#10 CertificationRequestInfo (including the public key) 639

7) Use the private key to create signature value for the (serialized) PKCS#10 640

CertificationRequestInfo (including the public key) 641

8) Construct a PKCS#10 CertificationRequest and Base64-encode it 642

9) Construct and send the NETCONF response message (see below) 643

Response: 644

<rpc-reply message-id="001" 645

 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 646

 <certificate-signing-request 647

 xmlns="http://example.com/ns/example-crypto-types-usage"> 648

 base64EncodedPkcs10CertificationRequest 649

 </certificate-signing-request> 650

</rpc-reply> 651

 652

This request prototype uses following specific items: 653

• message-id attribute: as above 654

• certificate-signing-request value: specific value of type Base64-encoded 655

PKCS#10 CertificationRequest (RFC 2986) but nothing special (be any other 656

value in the allowed range) 657

TODO: consider using NETCONF notifications to decouple the CSR supply in a response from 658

its request (key pair generation may take some time) 659

Exchange 2: supply EE certificate and (opt.) intermediate sub-CA certificates (see [17]) 660

<rpc message-id="002" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0"> 661

 <edit-config> 662

 <target> 663

 <candidate/> 664

 </target> 665

 <config> 666

 <keystore xmlns=”urn:ietf:params:xml:ns:yang:ietf-keystore” 667

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto- 668

 types"> 669

 <asymmetric-keys> 670

 <asymmetric-key> 671

 <name>LDevID-NETCONF</name> 672

 <public-key-format>ct:subject-public-key-info-format 673

 </public-key-format> 674

 <public-key>base64EncodedPubKey</public-key> 675

 <private-key-format>TODO</private-key-format> 676

 <hidden-private-key/> 677

 <certificates> 678

 <certificate> 679

 <name>EE Certificate</name> 680

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-crypto-types-20#section-3.2

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 17

 <cert-data>X509EeCertificateAndPathInEnvelope</cert-681

data> 682

 </certificate> 683

 </certificates> 684

 </asymmetric-key> 685

 </asymmetric-keys> 686

 </keystore> 687

 </config> 688

 </edit-config> 689

</rpc> 690

 691

This prototype uses following specific items: 692

• message-id attribute: as above 693

• name values: as above 694

• public-key value: as above 695

• cert-data values: as above 696

4.2.3 Illustration 697

This chapter illustrates the imprinting and use of LDevID-NETCONF credentials and trust 698

anchors. This description is informational and focusses on following “sunshine”: 699

• Step 1: Booting with IDevID 700

• Step 2: Imprinting of Trust Anchor for LDevID-NETCONF 701

• Step 3: Imprinting of LDevID-NETCONF Credential 702

• Step 4: Operationalizing LDevID-NETCONF 703

• Step 5: Using LDevID-NETCONF 704

4.2.3.1 Step 1: Booting with IDevID 705

When an IA component boots with its factory defaults, following truststore and keystore 706

incarnations become available (see RFC 8342 as well as sections 3 [16] and [17]): 707

• truststore 708

o Configuration stores: 709

▪ startup: --- 710

▪ candidate: --- 711

▪ running: --- 712

▪ intended: --- 713

o operational: trust anchor for IDevIDs (not persisted across reboots) 714

• keystore 715

o Configuration stores: 716

▪ startup: --- 717

▪ candidate: --- 718

▪ running: --- 719

▪ intended: --- 720

o operational: IDevID credential (not persisted across reboots) 721

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 18

TODO: propose a naming convention to allow the IDevID credential and trust anchor to be 722

found inside the truststore and keystore 723

4.2.3.2 Step 2: Imprinting of Trust Anchor for LDevID-NETCONF 724

When an IA component gets imprinted with the trust anchor for LDevID-NETCONF, the only 725

trust anchor that is available in operational allows to validate IDevID credentials. The 726

imprinting client cannot be assumed to be equipped with IDevIDs. This gap is addressed by a 727

specific procedure called “provisional accept of client cert” described above. Following 728

truststore and keystore incarnations become available through this imprinting step (see 729

4.2.2.5.3.1 for the request that triggers this state change). 730

• truststore 731

o Configuration stores: 732

▪ startup: --- 733

▪ candidate: trust anchor for LDevIDs (not persisted across reboots) 734

▪ running: --- 735

▪ intended: --- 736

o operational: trust anchor for IDevIDs (not persisted across reboots) 737

• keystore 738

o Configuration stores: 739

▪ startup: --- 740

▪ candidate: --- 741

▪ running: --- 742

▪ intended: --- 743

o operational: IDevID credential (not persisted across reboots) 744

Note: this imprinting step uses step 1 stores as follows: 745

• Trust anchor for IDevIDs in the truststore incarnation operational: not used for 746

unprotected imprinting (TOFU), used for validating the to-be-imprinted payload object 747

(voucher) for protected imprinting. In any case: not used for TLS client authentication. 748

• IDevID credential in the keystore incarnation operational: used for TLS server 749

authentication 750

4.2.3.3 Step 3: Imprinting of LDevID-NETCONF Credential 751

When an IA component gets imprinted with its LDevID-NETCONF credential directly after step 752

2, the only trust anchor that is available in operational allows to validate IDevID 753

credentials. This gap can be addressed by continuing to use the TLS session established for 754

step 2 during step 3 (if this can or shall not happen then the trust anchor for LDevID shall be 755

propagated to operational before imprinting the LDevID-NETCONF credential). Following 756

truststore and keystore incarnations become available through this procedure (see 757

4.2.2.5.3.2 for the request that triggers this state change): 758

• truststore 759

o Configuration stores: 760

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 19

▪ startup: --- 761

▪ candidate: trust anchor for LDevIDs (not persisted across reboots) 762

▪ running: --- 763

▪ intended: --- 764

o operational: trust anchor for IDevIDs (not persisted across reboots) 765

• keystore 766

o Configuration stores: 767

▪ startup: --- 768

▪ candidate: LDevID-NETCONF credential (not persisted across 769

reboots) 770

▪ running: --- 771

▪ intended: --- 772

o operational: IDevID credential (not persisted across reboots) 773

Note: this imprinting step does not rely on step 2 additions (not yet operational) on 774

application-level but relies on step 2 processing (“provisional accept of client cert”) on TLS -775

level. 776

4.2.3.4 Step 4: Operationalizing LDevID-NETCONF 777

By standard means (NETCONF <commit> operation) according to RFCs 6241/7950/8342, the 778

LDevID-NETCONF credential and trust anchor are operationalized. Following truststore 779

and keystore incarnations become available through this procedure: 780

• truststore 781

o Configuration stores: 782

▪ startup: --- 783

▪ candidate: --- 784

▪ running: trust anchor for LDevIDs (persisted across reboots) 785

▪ intended: trust anchor for LDevIDs (persisted across reboots) 786

o operational: trust anchor for LDevIDs and IDevIDs (not persisted across 787

reboots) 788

• keystore 789

o Configuration stores: 790

▪ startup: --- 791

▪ candidate: --- 792

▪ running: LDevID-NETCONF credential (persisted across reboots) 793

▪ intended: LDevID-NETCONF credential (persisted across reboots) 794

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 20

o operational: LDevID-NETCONF and IDevID credentials (not persisted 795

across reboots) 796

4.2.3.5 Step 5: Using LDevID-NETCONF 797

After step 4 LDevID-NETCONF credential and trust anchor can be used by the IA component 798

for NETCONF-over-TLS according to RFC 7589. This happens as follows: 799

• Trust anchor for LDevID-NETCONF: 800

o Is obtained from the truststore incarnation operational 801

o Is found by its well-known name LDevID-NETCONF inside the LDevID Bag 802

o Is used for sending out the TLS CertificateRequest message 803

o Is used for processing the TLS Certificate message sent by the client 804

• LDevID-NETCONF credential: 805

o Is obtained from the keystore incarnation operational 806

o Is found by its well-known name LDevID-NETCONF 807

o Is used for sending out the TLS Certificate message 808

o Is used for processing specific TLS messages (details depend on the 809

employed cipher suite which is again a subject to the cryptographic algorithm 810

catalogue for IEC/IEEE 60802 [TODO]) sent by the NETCONF client 811

4.2.3.6 Other Processing Steps 812

TODO: discuss further processing steps e.g., reboot and reset -to-factory (note: this relates to 813

the TSN-IA use cases) 814

5 Using the Solution – With Respect To NETCONF/YANG 815

5.1 Resource Access Authorization for NETCONF/YANG 816

5.1.1 Access Control Mechanism 817

On the mechanism level, IEC/IEEE 60802 uses NACM (RFC 8341) for the access control to 818

NETCONF/YANG resources. NACM especially specifies a YANG data model (ietf-819

netconf-acm) for expressing rules to control access to NETCONF/YANG resources. The 820

corresponding container is called nacm. 821

The NACM design pattern strikes with following properties: 822

i. NACM access enforcement uses configurable rules that live on the same server which 823

is protected by NACM access enforcement. 824

ii. NACM rules are managed through the same instance of the channel that NACM 825

protects. 826

This deviates from typical access control approaches in IT. It requires NACM to be self-827

reflexive: capable of expressing and enforcing rules about changing itself. This property is a 828

key enabler for IEC/IEEE 60802 security especially its resource access authorizations. 829

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 21

5.1.2 Access Control Model 830

On the conceptual level, IEC/IEEE 60802 profiles NACM to deliver a role-based authorization 831

model (RBAC)20. This role-based model is characterized by: 832

• The set of NETCONF/YANG resources upon a system component is partitioned 833

according to its YANG modules. Each item in this partitioning e.g., ietf-834

truststore is assigned one or more permission e.g., “Write”. The resulting 835

ensemble is assigned a permission name e.g., “PermitWrite”. 836

o IEC/IEEE 60802 security shall specify the set of permission names for 837

IEC/IEEE 60802 (TODO) 838

• The set of system actors is assigned one or more roles e.g., “TruststoreAdminRole”. 839

o IEC/IEEE 60802 shall specify the set of role names as well as the mechanism 840

to determine the role names that are assigned to an actor (see 5.1.4). An initial 841

drop for this is (TODO: consider further roles [there should not be too many]): 842

▪ TruststoreAdminRole 843

▪ KeystoreAdminRole 844

▪ UserMappingAdminRole 845

▪ NACMAdminRole 846

▪ RecoverySessionRole 847

▪ CommitRole 848

▪ ResetToFactoryRole 849

o IEC/IEEE 60802 does not specify the assignment of role names to actual 850

system entities. This is a duty of system owners or operators. 851

• The role names get assigned to permissions, so that a system actor is authorized to 852

perform an action upon a resource provided a role name is assigned to it that 853

encompasses this action upon this resource e.g., the permission “PermitWrite” for the 854

truststore container is assigned to the “TruststoreAdminRole”. 855

o IEC/IEEE 60802 shall specify the role to permission assignment. An initial drop 856

for this is (TODO: consider further roles): 857

▪ TruststoreAdminRole: clients with this role can write to 858

truststore container (subject to details,LDevID vs. IDevID) 859

▪ KeystoreAdminRole: clients with this role can write to the 860

keystore container (subject to details, LDevID vs. IDevID) 861

▪ UserMappingAdmin: clients with this role can write to the x509c2n 862

container 863

▪ NACMAdminRole: clients with this role can write to the nacm 864

container (subject to details, IEC/IEEE 60802 vs. custom rules) 865

▪ RecoverySessionRole: clients with this role act according the 866

NACM recovery session 867

—————————
20 NACM does natively not deliver a role-based access control model but can be geared towards a role -based model

by profiling

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 22

▪ CommitRole: clients with this role can perform the commit RPC 868

▪ ResetToFactoryRole: clients with this role can perform the factory-869

reset RPC (RFC 8808) 870

Background: RBAC is one of the well-known strategies to manage the complexity of the so-871

called access control matrix (x-axis: all system resources, y-axis: all system actors, x/y fields: 872

the access rights). There are other conceptual approaches for modelling this conceptual 873

matrix especially DAC and MAC. The role-based approach matches the needs of TSN-IA 874

better than especially DAC or MAC. 875

5.1.3 NACM Access Control Rules 876

5.1.3.1 CRUDX for the truststore Container 877

NACM snippet that allows any authenticated client to read ietf-truststore contents and 878

authenticated clients with ‘TruststoreAdminRole’ to write ietf-truststore contents: 879

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"> 880

 <enable-nacm>true</enable-nacm> 881

 <read-default>deny</read-default> 882

 <write-default>deny</write-default> 883

 <exec-default>deny</exec-default> 884

 <enable-external-groups>false</enable-external-groups> 885

 <groups> 886

 <group> 887

 <name>TruststoreAdmin</name> 888

 <user-name>TruststoreAdminRole</user-name> 889

 </group> 890

 <!-- other group entries --> 891

 </groups> 892

 <rule-list> 893

 <name>PermitRead for all</name> 894

 <group>*</group> 895

 <rule> 896

 <name>PermitRead</name> 897

 <module-name>ietf-truststore</module-name> 898

 <access-operations>read</access-operations> 899

 <action>permit</action> 900

 </rule> 901

 </rule-list> 902

 <rule-list> 903

 <name>PermitWrite for TruststoreAdmin</name> 904

 <group>TruststoreAdmin</group> 905

 <rule> 906

 <name>PermitWrite</name> 907

 <module-name>ietf-truststore</module-name> 908

 <access-operations>create update delete</access-operations> 909

 <action>permit</action> 910

 </rule> 911

 </rule-list> 912

 <!-- other rule-list entries --> 913

</nacm> 914

TODO: refinements (LDevID vs IDevID) 915

5.1.3.2 CRUDX for the Certificate-to-Name Mapping Container 916

NACM snippet that allows any authenticated client to write ietf-x509-cert-to-name 917

contents: 918

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"> 919

 <enable-nacm>true</enable-nacm> 920

 <read-default>deny</read-default> 921

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 23

 <write-default>deny</write-default> 922

 <exec-default>deny</exec-default> 923

 <enable-external-groups>false</enable-external-groups> 924

 <groups> 925

 <group> 926

 <name>UserMappingAdmin</name> 927

 <user-name>UserMappingAdminRole</user-name> 928

 </group> 929

 <!-- other group entries --> 930

 </groups> 931

 <rule-list> 932

 <name>PermitWrite for UserMappingAdmin</name> 933

 <group>UserMappingAdmin</group> 934

 <rule> 935

 <name>PermitWrite</name> 936

 <module-name>ietf-x509-cert-to-name</module-name> 937

 <access-operations>create update delete</access-operations> 938

 <action>permit</action> 939

 </rule> 940

 </rule-list> 941

 <!-- other rule-list entries --> 942

</nacm> 943

5.1.3.3 CRUDX for the keystore container 944

TODO: elaboration (LDevID vs IDevID, public vs. private portions) 945

5.1.3.4 CRUDX for the nacm Container 946

In order to be able to update the initial or current instance of the nacm container there shall be 947

a NACM rule that allows one or more actors to manage the NACM rules. 948

NACM snippet that allows authenticated clients with ‘NACMAdminRole’ to write ietf-949

netconf-acm contents: 950

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"> 951

 <enable-nacm>true</enable-nacm> 952

 <read-default>deny</read-default> 953

 <write-default>deny</write-default> 954

 <exec-default>deny</exec-default> 955

 <enable-external-groups>false</enable-external-groups> 956

 <groups> 957

 <group> 958

 <name>NACMAdmin</name> 959

 <user-name>NACMAdminRole</user-name> 960

 </group> 961

 <!-- other group entries --> 962

 </groups> 963

 <rule-list> 964

 <name>PermitAll for NACMAdminRole</name> 965

 <group>NACMAdmin</group> 966

 <rule> 967

 <name>PermitAll</name> 968

 <module-name>ietf-netconf-acm</module-name> 969

 <access-operations>*</access-operations> 970

 <action>permit</action> 971

 </rule> 972

 </rule-list> 973

 <!-- other rule-list entries --> 974

</nacm> 975

TODO: refinements (IEC/IEEE 60802 rules (read-only) vs. manufacturer or owner/operator 976

extensions (read-write)) 977

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 24

5.1.3.5 CRUDX for <commit> 978

NACM snippet that allows authenticated clients with ‘CommitRole’ to execute <commit>: 979

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"> 980

 <enable-nacm>true</enable-nacm> 981

 <read-default>deny</read-default> 982

 <write-default>deny</write-default> 983

 <exec-default>deny</exec-default> 984

 <enable-external-groups>false</enable-external-groups> 985

 <groups> 986

 <group> 987

 <name>Committers</name> 988

 <user-name>CommitRole</user-name> 989

 </group> 990

 <!-- other group entries --> 991

 </groups> 992

 <rule-list> 993

 <name>Permit for CommitRole</name> 994

 <group>Committers</group> 995

 <rule> 996

 <name>PermitCommit</name> 997

 <rule-type> 998

 <protocol-operation> 999

 <rpc-name>commit</rpc-name> 1000

 </protocol-operation> 1001

 </rule-type> 1002

 <action>permit</action> 1003

 </rule> 1004

 </rule-list> 1005

 <!-- other rule-list entries --> 1006

</nacm> 1007

5.1.3.6 CRUDX for <factory-reset> 1008

NACM snippet that allows authenticated clients with ‘FactoryResetRole’ to execute 1009

<factory-reset>: 1010

<nacm xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-acm"> 1011

 <enable-nacm>true</enable-nacm> 1012

 <read-default>deny</read-default> 1013

 <write-default>deny</write-default> 1014

 <exec-default>deny</exec-default> 1015

 <enable-external-groups>false</enable-external-groups> 1016

 <groups> 1017

 <group> 1018

 <name>FactoryResetters</name> 1019

 <user-name>FactoryResetRole</user-name> 1020

 </group> 1021

 <!-- other group entries --> 1022

 </groups> 1023

 <rule-list> 1024

 <name>Permit for FactoryResetRole</name> 1025

 <group>Committers</group> 1026

 <rule> 1027

 <name>FactoryResetters</name> 1028

 <rule-type> 1029

 <protocol-operation> 1030

 <rpc-name>factory-reset</rpc-name> 1031

 </protocol-operation> 1032

 </rule-type> 1033

 <action>permit</action> 1034

 </rule> 1035

 </rule-list> 1036

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 25

 <!-- other rule-list entries --> 1037

</nacm> 1038

5.1.3.7 CRUDX for Other NETCONF/YANG Resources 1039

TODO: is there a catalogue of YANG modules that are required for or supported by IEC/IEEE 1040

60802? Are there qualifications for the items in this catalogue e.g. mandatory/optional or read-1041

only for owner/operator vs. write by owner/operator? 1042

5.1.4 NETCONF Usernames 1043

RFC 7589 (section 7) requires NETCONF servers to map client certificates to “NETCONF 1044

usernames” and specifies a concrete mapping procedure for this purpose. Note: 1045

• This is defined as part of the binding between NETCONF and TLS (RFC 7589). 1046

• It happens outside the scope of the applicable TLS specification (RFC 5246). 1047

This mapping is represented by the YANG module ietf-x509-cert-to-name. 1048

The cert-to-name mapping procedure in RFC 7589 (section 7) is used as follows by IEC/IEEE 1049

60802: 1050

(a) is profiled to comprise mapping list with a single entry containing: 1051

o fingerprint: the fingerprint of the trust anchor for the production cell or site 1052

o map_type: common-name21 1053

(b) will produce a match in its subclause 2 provided the following holds 1054

o Trust anchor is not self-signed: always matches for clients that 1055

i. Possess a valid EE certificate (and chain) issued underneath the root 1056

CA certificate that is identified by the fingerprint value in (a) 1057

ii. Can demonstrate PoP for the private key that matches the public key in 1058

its EE certificate 1059

o Root CA certificate is self-signed: matches when i and ii hold and when the 1060

root CA certificate is part of the TLS Certificate message (this is allowed 1061

by the TLS specification but deviates from the TLS best practices, see 5.2.1) 1062

(c) will provide the CN portion in the subject DN as the NETCONF username. IEC/IEEE 1063

60802 profiles this string value to carry one or more of the IEC/IEEE 60802-defined 1064

role names e.g., “TruststoreAdminRole” (multiple role names in one CN value are 1065

separated by whitespace), not an actual username e.g., “John Doe”. 1066

(d) as-is (never applies in sunshine case) 1067

The small print for this profile of the client identity mapping procedure in RFC 7589 is: 1068

• Confined to the X.500 naming concept, which is actually deprecated by RFC 7589 1069

“The usage of CommonNames is deprecated and users are encouraged to use 1070

subjectAltName mapping methods instead.” 1071

• Requires elaborating on DN name building rules beyond their sub-portion; different 1072

system actors must have different DN values but can have the same CN value 1073

Resolution options for this issue of type “would work but is somewhat phoney”: 1074

—————————
21 Alternatives: ‘specified’ would require multiple items (one item per role). ‘san-rfc822-name’, ‘san-dns-name’, ‘san-

ip-address’ and ‘san-any’ have issues with syntax/semantics in case of a role -based access control model

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 26

• Getting rid of X.500 naming: an additional mapping e.g., ‘san-60802-role’ (60802 role 1075

in subject alternative name) or ‘ext-60802-role’ (60802 role in own, private extension; 1076

this is preferred over ‘san-60802-role’ [using ASN.1 “GeneralName” for carrying role 1077

assignments is syntactically possible {OtherName} but would be semantically 1078

misleading]) 1079

• Getting rid of the TLS best practices violation: modified mapping procedure 1080

TODO: are we allowed to propose another certificate-to-NETCONF username mapping type or 1081

even another mapping strategy? 1082

Important: 1083

• The IEC/IEEE 60802 roles that are assigned to a system actor (and that are 1084

determined by the client certificate to NETCONF username mapping) are used for 1085

determining its resource access authorization. 1086

• The IEC/IEEE 60802 roles are not used for auditing/logging purposes. Audit/logging 1087

uses: subject DN in the EE certificate (X.500 naming concept) and/or SAN in the EE 1088

certificate (IETF naming concept that is not confined to the X.500 straitjacket) 1089

Note: EE certificates that are used by IEC/IEEE 60802 are not related to human users. 1090

Hence PII resp. privacy is a non-issue in IEC/IEEE 60802. 1091

TODO: the client identity mapping in RFC 7589 appears to be overhauled with current IETF 1092

drafts, see https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-1093

23#section-3.3, keyword “cert-to-name-mapping” 1094

5.1.5 Processing Pipeline 1095

The processing pipeline for NETCONF/YANG exchanges in IEC/IEEE 60802 has 4 main steps. 1096

These steps are done by the system component that shall be configured i.e., acts in NETCONF 1097

server role: 1098

1. Establish TLS session with mutual entity authentication using option a or b: 1099

a. Taking-off case22 (see chapter 4 for details): 1100

▪ IDevID credential and trust anchor on server side 1101

▪ LDevID-NETCONF credential and trust anchor on client side 1102

b. Cruising case23 (see 5.2.1 for details): 1103

▪ LDevID-NETCONF credential and trust anchor on server side 1104

▪ LDevID-NETCONF credential and trust anchor on client side 1105

2. (If step 1 was successful): determine the NETCONF username of the client (see 5.1.4) 1106

3. (If step 2 was successful): enforce the permissions of the client (see 5.1.3) 1107

4. (If step 3 was permitted): perform the requested NETCONF/YANG operation 1108

These steps depend on specific items in the operational and configuration data stores: 1109

• Step 1: uses contents of the YANG modules ietf-truststore and ietf-keystore 1110

—————————
22 Before the imprinting of LDevID-NETCONF credentials and trust anchor to the system component that acts in

NETCONF and TLS server role has happened

23 After the imprinting of LDevID-NETCONF credentials and trust anchor to the system component that acts in
NETCONF and TLS server role has happened

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 27

• Step 2: uses contents of the YANG module ietf-x509-cert-to-name (IEC/IEEE 1111

60802-specific certificate to NETCONF username mapping) 1112

• Step 3: uses contents of the YANG module ietf-netconf-acm (IEC/IEEE 60802-1113

specific NACM rules, opt. custom additions) 1114

• Step 4: can update the contents of the YANG modules used in steps 1, 2 and 3 1115

This presents a repercussion: step 4 can change the operational context for steps 1/2/3 that 1116

step 4 depends upon. This requires an explicit and granular consideration of booting with factory 1117

defaults and resetting to factory. 1118

5.1.5.1 Booting with Factory Default 1119

• Operational (and configuration) data stores state after booting with factory defaults: 1120

o ietf-truststore: manufacturer created and built-in trust anchor for verifying 1121

IDevID credentials (read-only) 1122

o ietf-keystore: manufacturer created and built-in IDevID credential (read-1123

only) 1124

o ietf-x509-cert-to-name: empty24 1125

o ietf-netconf-acm: IEC/IEEE 60802-defined and manufacturer built-in NACM 1126

rules (read-only) 1127

o Other YANG modules: any initial state as specified by IEC/IEEE 60802 1128

• Imprinting sequence - Taking-off phase: 1129

1. Imprint (<edit-config>) the trust anchor for verifying LDevID(-NETCONF) 1130

credentials using the NACM “recovery session” feature: 1131

o Step 1, subcase a: challenge the client for authentication according to any 1132

trust anchor of its choice (empty certificate_authorities portion in 1133

TLS CertificateRequest) and establish this wildcard authentication. 1134

Details are explained in 4.1.1 (tasks for the TLS client) and 4.1.2 (tasks for 1135

the TLS server). Note: the latter is conducted according a “provisional 1136

accept of client cert” procedure: any (valid) credential with role 1137

“RecoverySessionRole” allows clients to pass this step 1. This is true for 1138

“official” as well as for “rogue” credentials (see protected vs. unprotected 1139

imprinting for consequences and their mitigations) 1140

o Step 2: no cert-to-role mapping happens for the “recovery session” feature 1141

of NACM. Any (valid) EE certificate with role “RecoverySessionRole” allows 1142

clients to pass step 2 1143

o Step 3: no NACM enforcement happens for the “recovery session” feature 1144

of NACM. Any ((valid) EE certificate with role “RecoverySessionRole” 1145

allows clients to pass step 3 (has caveats, see above) 1146

o Step 4: depends on whether the trust anchor imprinting is protected or not 1147

▪ Unprotected imprinting: no further security checks possible. The 1148

provided trust anchor is configured into the truststore. Does not 1149

change of the described exposition TODO: identify resulting attack 1150

vectors, discuss their severity 1151

—————————
24 The fingerprint of the LDevID trust anchor is not known at this point in time

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 28

▪ Protected imprinting: signature checks using the built-in trust 1152

anchor for IDevID. The provided trust anchor is only configured into 1153

the truststore when these checks are passed. Can reduce the 1154

described exposition: a (valid) voucher is needed to pass step 4 (if 1155

RFC 8366 is used for protected imprinting). TODO: identify 1156

resulting price tag, discuss its affordability 1157

2. Imprint (<edit-config>) instruction(s) for the mapping from client certificates to 1158

NETCONF usernames using the “recovery session” feature of NACM: 1159

o Step 1, subcase a: as above25 1160

o Step 2: as above 1161

o Step 3: as above 1162

o Step 4: the provided mapping is configured into the x509c2n. Any (valid) 1163

credential for the role “RecoverySessionRole” allows clients to pass steps 1164

1-4. 1165

3. Operationalize (<commit>) the configuration changes 1 and 2 using the “recovery 1166

session” feature of NACM: 1167

o Step 1, subcase a: as above26 1168

o Step 2: as above 1169

o Step 3: as above 1170

o Step 4: operationalize the configuration changes. Any (valid) credential for 1171

the role “RecoverySessionRole” allows clients to pass steps 1 -4 1172

Note: subsequent truststore and x509c2n operations during the cruising phase can be 1173

performed without depending on the NACM ‘recovery session’ resp. the role IEC/IEEE 60802 1174

“RecoverySessionRole”. To avoid an excessive use of the NACM ‘recovery session’ the 1175

IEC/IEEE 60802 “RecoverySessionRole” should not be used as part of multi-valued role 1176

assignments. 1177

• Imprinting sequence - Crusing phase: 1178

4. Imprint (<edit-config>) the LDevID-NETCONF credential using the 1179

KeystoreAdminRole: 1180

o Step 1, subcase b: challenge the client for authentication according to the 1181

trust anchor for LDevID(-NETCONF) credentials and establish this 1182

o Step 2: extracts the common-name value in the EE certificate. Any LDevID-1183

NETCONF EE certificate with DN/CN value passes (the certificate 1184

fingerprint matching is covered by step 1) 1185

o Step 3: uses 5.1.3.3 to check the common-name value against 1186

“KeystoreAdminRole”. Any LDevID-NETCONF EE certificate with 1187

“KeystoreAdminRole” passes. 1188

o Step 4: depends on whether key pair is generated locally (2 subsequent 1189

NETCONF/YANG exchanges for LDevID credential imprinting) or remotely 1190

(1 exchange for LDevID credential imprinting). Any (valid) credential for the 1191

role “KeystoreAdminRole” issued by the trust anchor that was imprinted in 1192

—————————
25 Using the trust anchor for LDevID(-NETCONF) credentials requires to make it operational

26 Using the trust anchor for LDevID(-NETCONF) credentials requires to make it operational

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 29

1, employed for NETCONF username mapping in 2 and operationalized in 1193

3 allows clients to pass steps 1-4. 1194

5. Supply custom NACM rules (optional) using the NACMAdminRole: 1195

o Step 1, subcase b: as above. 1196

o Step 2: as above 1197

o Step 3: uses 5.1.3.4 to check the common-name value against 1198

“NACMAdminRole”. Any LDevID-NETCONF EE certificate with 1199

“NACMAdminRole” passes. Also makes sure write operations do not affect the 1200

basic NACM rules specified by IEC/IEEE 60802 1201

o Step 4: straight-forward (when steps 1-3 are passed). 1202

6. Operationalize (<commit>) the configuration changes 5 and 6 using the 1203

ConfigurationManagerRole 1204

o Step 1, subcase b: as above 1205

o Step 2: as above 1206

o Step 3: uses 5.1.3.5 to check the common-name value against 1207

“ConfigurationManagerRole”. Any LDevID-NETCONF EE certificate with 1208

“ConfigurationManagerRole” passes. 1209

o Step 4: operationalize the configuration changes. Any (valid) credential for the 1210

role “ConfigurationManagerRole” allows clients to pass steps 1-4 1211

• Operational (and configuration) data state stores after imprinting: 1212

o ietf-truststore: owner/operator configured trust anchor for LDevID(-1213

NETCONF) credentials. Manufacturer created and built-in trust anchor for 1214

verifying IDevID credentials (read-only) 1215

o ietf-x509-cert-to-name: owner/operator created configuration instance of 1216

the IEC/IEEE 60802-defined cert-to-name mapping 1217

o ietf-keystore: owner/operator configured LDevID(-NETCONF) credential. 1218

Manufacturer created and built-in IDevID credential (read-only) 1219

o ietf-netconf-acm: owner/operator configured NACM rules (optional). 1220

IEC/IEEE 60802-defined and manufacturer built-in NACM rules (read-only). 1221

o Other YANG modules: arbitrary 1222

5.1.5.2 Resetting to Factory Default 1223

Resetting to factory shall be supported according to the means that are defined by RFC 8808. 1224

RFC 8808 defines a NETCONF action "factory-reset" and a corresponding YANG module 1225

ietf-factory-default for the purpose of factory reset. 1226

IEC/IEEE 60802 components protect the NETCONF action "factory-reset" with the same 1227

approach as other NETCONF operations: 1228

• Perform factory-reset using the FactoryResetRole: 1229

o Step 1: challenges the client for authentication with respect to the LDevID(-1230

NETCONF) trust anchor. Any valid LDevID-NETCONF credential issued by the 1231

imprinted trust anchor passes. 1232

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 30

o Step 2: extracts the common-name value in the EE certificate. Any LDevID-1233

NETCONF EE certificate with DN/CN value passes (the certificate fingerprint 1234

matching is covered by step 1) 1235

o Step 3: uses 5.1.3.6 to check the common-name value against 1236

“FactoryResetRole”. Any LDevID-NETCONF EE certificate with 1237

“FactoryResetRole” passes. 1238

o Step 4: straight-forward (when steps 1-3 are passed). 1239

Supporting additional means for factory reset e.g., physical presence (reset button) is at the 1240

discretion of IA component manufacturers. The protection of such additional means is out -of-1241

scope for IEC/IEEE 60802 security. 1242

5.2 Message Exchange Protection for NETCONF/YANG 1243

5.2.1 TLS Profile 1244

• TLS 1.2 with mutual authentication (mandated by RFC 7589). See Annex D for more 1245

information. 1246

• Cipher suites: 1247

o TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 1248

o TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 1249

o Note: RFC 7589 implicitly mandates TLS_RSA_WITH_AES_128_CBC_SHA by 1250

referring to RFC 5246. IEC/IEEE 60802 deselects this cipher suite for following 1251

reasons: excessive asymmetric key lengths needed, no AEAD scheme, no PFS 1252

• Curves for ECC: 1253

o NIST curves (NIST FIPS 186 ‘Digital Signature Standard (DSS)’): 1254

▪ secp521 1255

▪ secp256 1256

o Bernstein/Goldilocks curves (RFC 7748) 1257

▪ curve448 (“Goldilocks” aka “Edwards” curve) 1258

▪ curve25519 (“Bernstein” curve) 1259

o TODO: discussion needed with 802.1 Security Task Group: support of ECC 1260

with >200 bits security strength esp. secp521? 1261

• PKI integration: 1262

o Certification paths: 1263

▪ Server: arbitrary length (1..n), self-signed root CA certificate shall be 1264

present in TLS Certificate messages (needed for 5.1.4, deviates 1265

from default behavior27). Implementations must support TLS 1266

Certificate message with 1..3 certificates objects .i.e. a PKI path 1267

length of 3. 1268

—————————
27 RFC 5246: Because certificate validation requires that root keys be distributed
independently, the self-signed certificate that specifies the root certificate authority MAY be
omitted from the chain, under the assumption that the remote end must already possess it i n
order to validate it in any case.

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 31

▪ Client: ditto 1269

o Certificate contents: X.509v3 public key certificates according to RFC 5280 1270

fulfilling the following criteria 1271

▪ Server: the EE certificate shall carry the FQDN of the NETCONF server 1272

in its subjectAltName extension (mandated by RFC 7589) and digital 1273

signature in its keyUsage extension. TODO: validity period (relates to 1274

certificate supply/update strategy) 1275

▪ Client: the EE certificate shall carry digitalSignature in its keyUsage 1276

extension. TODO: validity period (relates to certificate supply/update 1277

strategy) 1278

o Certificate supply/update strategy: TODO: informative text considering e.g. 1279

human operated and/or automated supply and update 1280

o Certificate revocation strategy: TODO: informative (preferred) and/or normative 1281

text 1282

• TLS extensions (see RFC 6066): many RFC 6066 extensions assume TLS clients to 1283

be constrained and TLS servers to be rather unconstrained. This does not exactly 1284

match the IEC/IEEE 60802 preconditions. 1285

o Server name indication: not used (addresses single server instances that serve 1286

multiple DNS names) 1287

o Maximum fragment length negotiation: TODO (allows to agree on a max TLS 1288

record layer payload length shorter than 2**14) 1289

o Client certificate URLs: not used (allows to replace content by identifier in case 1290

of TLS Certificate messages sent by the client) 1291

o Trusted CA indication: not used (allows to clients to tell servers about their 1292

trust anchors) 1293

o Truncated HMAC: not used (allows to ask for truncating the output of the hash 1294

function to 80 bits when forming MAC tags) 1295

o Certificate status request: TODO (allows TLS clients to ask for OCSP rather 1296

than CRLs for verifying server certificates) 1297

6 Exploiting the Solution – Other Trust Anchors and Credentials 1298

6.1 Supply 1299

TODO: describe the supply (creating) of local, deployment-specific trust anchors and 1300

credentials for other exchanges than NETCONF/YANG by means of NETCONF/YANG (the 1301

supply for NETCONF/YANG exchanges by means of NETCONF/YANG is described in 4) 1302

6.2 Handling 1303

TODO: describe the handling (using/updating/deleting…) of local, deployment-specific 1304

trust anchors and credentials for any exchanges by means of NETCONF/YANG. 1305

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 32

7 Using the Exploitation – Beyond NETCONF/YANG 1306

7.1 TSN-IA Defined Exchanges Beyond NETCONF/YANG 1307

7.1.1 Resources Access Authorization 1308

TODO: describe how the imprinting solution for TSN-IA-defined exchanges other than 1309

NETCONF/YANG can be exploited to protect the access to resources (exposed by these 1310

exchanges) 1311

7.1.2 Message Exchange Protection 1312

TODO: describe how the imprinting solution for TSN-IA-defined exchanges other than 1313

NETCONF/YANG can be exploited to protect the actual message exchanges 1314

7.2 Other Exchanges 1315

Using this exploitation is regarded a matter of middleware and application components. 1316

This needs to be elaborated by these specifications. It is not detailed by TSN-IA. 1317

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 33

Annex A IEEE 802.1AR ‘Secure Device Identity’ 1318

A.1 IDevID Objects 1319

• Abbreviation for: Initial Device IDentifier 1320

• Definition (somewhat rephrased for simplicity): a manufacturer-generated and installed 1321

object that is cryptographically bound to the component, and that comprises (see [10] 1322

for all applicable details): 1323

o An asymmetric private key 1324

o An EE certificate which binds the corresponding public key to information 1325

about the component and that is stated by its manufacturer. This certificate is 1326

assumed to be: 1327

▪ Valid eternally (notAfter=99991231235959Z) 1328

▪ Have an X.500 subject field (DN) carrying a unique product serial 1329

number28. 1330

▪ Not self-signed 1331

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 1332

certificate to the trust anchor (self-signed root CA certificate) of the 1333

manufacturer 1334

• Quantity: IEEE 802.1AR-2018 allows one component to possess one or more IDevIDs 1335

(IEEE 802.1AR-2009 did limit this to one IDevID). 1336

• Important: 1337

o IDevID issuance and supply is meant to happen once in the lifetime of the 1338

component (during its manufacturing and before its shipment). Typically, the 1339

IDevID object is never updated or erased. 1340

o Since IDevID objects are created at component manufacturing time they can 1341

only contain information known at manufacturing time (these items are called 1342

‘product master data’ herein) . 1343

o System integrators and owner/operators do not have to worry about IDevID 1344

object production - they consume IDevIDs only. 1345

o Invalidation of an IDevID credential does not (have to) prevent the usage of the 1346

component: 1347

▪ This only prevents the use of this IDevID object. This affects usages of 1348

this IDevID after the invalidation event, not (or not necessarily) earlier 1349

usages of this IDevID before its invalidation event. 1350

▪ This does not affect the usage of other IDevID credentials - if there are 1351

multiple IDevID credential objects for a specific component. 1352

A.2 LDevID Objects 1353

• Abbreviation for: Locally significant Device IDentifier 1354

—————————
28 The serialNumber value shall be unique within the domain of significance that is identified by the issuer name, not

just within the context of precursor DN fields in the subject name

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 34

• Definition (somewhat rephrased for simplicity): a system integrator or owner/operator-1355

generated and installed object that is cryptographically bound to the component, and 1356

that comprises (see [10] for all applicable details): 1357

o An asymmetric private key 1358

o An EE certificate which binds the corresponding public key to information 1359

about the component and that is stated by its system integrator or 1360

owner/operator. This certificate is assumed to be: 1361

▪ Not eternal, no [notBefore, notAfter] interval length is suggested 1362

▪ Not self-signed 1363

o A certificate chain i.e., a list of intermediate CA certificates that links the EE 1364

certificate to the trust anchor (self-signed root CA certificate) of the system 1365

integrator or owner/operator. 1366

• Quantity: IEEE 802.1AR-2009 and 2018 allow one component to possess one or more 1367

LDevIDs 1368

• Important: 1369

o LDevID issuance and supply is meant to happen one or more times during the 1370

lifetime of the component (during bootstrapping or even operation phases). 1371

The LDevID objects can be updated or erased. A security model is needed to 1372

prevent attackers from supplying or managing LDevID objects. 1373

o The LDevID objects are created at bootstrapping or even operation time of the 1374

component. Hence, they can and shall contain information known when this 1375

component is bootstrapped or operated but which is not known when the 1376

component is manufactured (this is also called ‘deployment master data’ 1377

herein). 1378

o Manufacturers do not have to worry about LDevID supply. With respect to 1379

LDevIDs their “only” concern is supplying (protected and initially empty) 1380

storage and means to support system integrators and owners/operators e.g ., 1381

building blocks for cryptographic operations such as random number 1382

generation, key pair generation, object signing and validating . 1383

o Invalidation of an LDevID credential does not (have to) prevent the usage of 1384

the component: 1385

▪ This only prevents the use of this LDevID credential. This affects 1386

usages of this LDevID credential after the invalidation event, not (or not 1387

necessarily) earlier usages of this IDevID before its invalidation event. 1388

▪ This does not affect the usage of other LDevID credentials - if there are 1389

multiple LDevID credential objects for a specific component . 1390

▪ Although this reads equivalent to the corresponding section for 1391

IDevIDs, the consequences of a LDevID invalidation are more severe 1392

than IDevID invalidation. This is due to following: 1393

• LDevIDs should be assumed to be used often (hint: “daily use”) 1394

• IDevIDs can be assumed to be used occasionally (hint: “annual 1395

use”) 1396

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 35

Annex B IETF RFC 6125 1397

RFC 6125 (see [6]) is mandated for checking the identity of a NETCONF-over-TLS server by 1398

RFC 7589 ‘Using the NETCONF Protocol over Transport Layer Security (TLS) with Mutual 1399

X.509 Authentication ’ (see [8]). 1400

RFC 6125 requires the name of an application service to be (or to be based on) a DNS 1401

domain name in one of the following forms: 1402

• Traditional domain name: a FQDN with labels constrained to ASCII letter, digits and 1403

hyphen (further small-print applies) 1404

• Internationalized domain name: a FQDN with at least one Unicode label (further 1405

small-print applies) 1406

Following ‘actual vs. expected’-matching rules apply for checking the identity of a NETCONF-1407

over-TLS server based on their application names: 1408

• Actual (FQDN in subjectAltName extension of the EE certificate) is a traditional 1409

domain name: case-insensitive ASCII comparison against expected (from address info 1410

e.g., request URL) 1411

• Actual (FQDN in subjectAltName extension of the EE certificate) is an 1412

internationalized domain name: case-insensitive ASCII comparison against expected 1413

(from address info e.g., request URL) after performing any U-label to an A-label, cf. 1414

RFC 5890 (see [4]) and RFC 5891 (see [5]) for details. 1415

• Actual (FQDN in subjectAltName extension of the EE certificate) contains a wildcard in 1416

its leftmost label: 1417

o “*” always matches e.g., foo.example.com matches *.example.com (does not 1418

match foo.example.net or foo.superexample.com) 1419

o “<abc>*<xyz>” matches when it matches e.g., foobar.example.com matches 1420

foo*.example.com (small-print applies, see RFC 6125) 1421

• Actual (CN in subject field [this is an X.500 DN] of the EE certificate) is a traditional 1422

domain name: case-insensitive ASCII comparison against expected (from address info 1423

e.g., request URL) 1424

As a last resort check (if no FQDN can be found in the subjectAltName extension of the EE 1425

certificate) these matching rules can be applied to the CN portion of the subject DN value 1426

(small-print applies, see RFC 6125). 1427

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 36

Annex C Sequence Charts 1428

C.1 Post Imprinting Processing Steps 1429

Sequence chart for NETCONF-over-TLS exchanges (RFCs 5246, 7589, 8341) once the IA 1430

component was equipped for this purpose: 1431

 1432

C.2 Imprinting Processing Steps 1433

Sequence chart for equipping an IA component to participate in NETCONF-over-TLS 1434

exchanges: 1435

 1436

C.2.1 Server Identity Checking Sub-Steps 1437

Sequence sub-chart for checking the server identity for NETCONF-over-TLS in case of an IA 1438

component that booted in factory default state: 1439

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 37

 1440

C.2.2 Client Identity Verification Sub-Steps 1441

Sequence sub-chart for verifying the client identity for NETCONF-over-TLS in case of an IA 1442

component that booted in factory default state: 1443

 1444

V0.4 2021-07-09

Security Slice IEC/IEEE 60802 Page 38

Annex D TLS Protocol Versions 1445

There are following versions of the TLS protocol: 1446

• TLS 1.0: IETF RFC 2246, January 1999 1447

• TLS 1.1: IETF RFC 4346, April 2006 1448

• TLS 1.2: IETF RFC 5246, August 2008 1449

• TLS 1.3: IETF RFC 8446, August 2018 1450

By the time of writing their fitness assessment is: 1451

• In good standing: TLS 1.2 and 1.3 1452

• Deprecated: TLS 1.0 and 1.1 (see RFC 8996 ‘Deprecating TLS 1.0 and TLS 1.1 ’, 1453

March 2021) 1454

The NETCONF adoption of the TLS protocol versions in good standing is: 1455

• TLS 1.2: used by the current NETCONF-over-TLS standard (RFC 7589) 1456

• TLS 1.3: not used by the current NETCONF-over-TLS standard (RFC 7589). More 1457

precisely: 1458

o By the time of writing there is not yet a NETCONF WG draft document that 1459

updates the TLS protocol binding for NETCONF to TLS 1.3 (RFC 8446). 1460

o There are information model work-in-progress documents (draft-ietf-netconf-1461

tls-client-server-25) that consider an update from {TLS 1.2} to {TLS 1.2, TLS 1462

1.3} in the information model for NETCONF/YANG (not: the NETCONF 1463

protocol binding to TLS) 1464

