
Discussion of Maintenance Items 331
and 332

Revision 2

Geoffrey M. Garner

Huawei (Consultant)

gmgarner@alum.mit.edu

IEEE 802.1 TSN TG

2021.08.09

Introduction

❑This presentation provides background information and discussion for

802.1 Maintenance Items 331 and 332

❑Maintenance item 331 corrects an error in the computation of

meanLinkDelay in the case where common mean link delay service

(CMLDS) is used

▪The error occurs only in the case of CMLDS; the computation is

correct in the case of instance-specific peer delay

❑Maintenance item 332 corrects an error, for the case of external port

configuration, that results in an Announce message not being sent

immediately when the port state changes to MasterPort

▪The error occurs only in the case of external port configuration; the

operation is correct for the case of BMCA

August 2021 IEEE 802.1 TSN 2

Maintenance Item #331 – 1

❑The computation of meanLinkDelay is organized differently for

instance-specific peer delay and CMLDS

▪The difference is only in the organization of the computation; the resulting

value for meanLinkDelay is intended to be the same for both (given the

same inputs)

❑The difference arose because IEEE Std 802.1AS-2011 and IEEE Std

1588-2008 were developed independently and separately

▪This was previously not a problem because gPTP, using transportSpecific

0x1 in 802.1AS-2011 and sdoId 0x100 in 802.1AS-2020, is isolated from

other PTP profiles (which use transport specific 0x0 (IEEE 1588-2008) or

values of sdoId other than 0x100 (IEEE 1588-2019)

❑However, CMLDS is common across all PTP domains, and therefore

meanLinkDelay computations by CMLDS must be consistent and

comply with IEEE Std 1588-2019

▪Since the CMLDS specifications in IEEE 1588-2019 organize the

meanLinkDelay computations in the same way as for instance-specific

peer delay in IEEE 1588-2019, 802.1AS-2020 also must organize the

CMLDS computations in this manner

August 2021 IEEE 802.1 TSN 3

Maintenance Item #331 – 2

❑The above was pointed out in comment #46 against 802.1AS-Rev/D5.0

▪The resolution of the comment intended to fix the problem; unfortunately, the

implementation of the fix was not correct

▪Some confusion arose from the fact that the 1588 organization of the

meanLinkDelay computation involves delayAsymmetry

•This led to the mistaken impression that 1588 actually adjusted the meanLinkDelay

value to account for delayAsymmetry

•However, more recent examination of 1588 (both 2008 and 2019) indicates that

this is not correct; while delayAsymmetry is used in the computation, it is added

and subtracted such that its effect cancels out

•The resulting meanLinkDelay computed in 1588 is the arithmetic mean of the

delays in the two directions, just as for instance-specific peer delay in 802.1AS

•However, the fact that delayAsymmetry is added and subtracted in the 1588

computation, in addition to other differences in organization of the computation,

means that the meanLinkDelay computation in 802.1AS must be specified

differently for instance-specific peer delay and CMLDS (even though the resulting

value is intended to be the same in both cases)

▪In any case, the meanLinkDelay computation in 802.1AS-2020 for the case

of CMLDS must be corrected; this is the intent of maintenance item #331

August 2021 IEEE 802.1 4

Maintenance Item #331 - 3

❑Relevant aspects of the meanLinkDelay computation, as specified in IEEE

1588-2019, subclause 11.4.2 (note that only the relevant aspects are

summarized below, i.e., missing list items are not relevant; see 1588-2019 for

the full specification):

Except when using option 16.10, in which case the modifications of this subclause

specified in 16.10 shall hold, the actual value of the <meanLinkDelay> is computed as

follows for each instance of a peer-to-peer delay measurement between PTP Ports:

a) If required to send a Pdelay_Req message based on the requirements of 9.5.13, the

requester PTP Port on PTP Instance-A prepares a Pdelay_Req message as follows:

1) The correctionField (see 13.3.2.9) shall be set to 0.

3) Prior to transmission on an egress PTP Port, the correctionField of the

transmitted Pdelay_Req message shall be modified by subtracting the value of the

egress path <delayAsymmetry> from the correctionField of the transmitted Pdelay_Req

message.

4) The originTimestamp shall be set to 0 or an estimate no worse than ±1 s of

the egress timestamp, t1, of the Pdelay_Req message.

5) PTP Instance-A shall send the Pdelay_Req message and generate and save

timestamp t1.

August 2021 IEEE 802.1 5

Maintenance Item #331 - 4

❑Relevant aspects of the meanLinkDelay computation (cont.)

c) If the delay responder is a two-step PTP Port, it shall:

1) Generate timestamp t2 upon receipt of the Pdelay_Req message.

2) Prepare a Pdelay_Resp and a Pdelay_Resp_Follow_Up message with the

common header of the Pdelay_Resp and Pdelay_Resp_Follow_Up messages,

respectively, as specified in 13.3.2 , except for the sequenceId, correctionField, and

domainNumber fields, which are as specified in the subsequent points.

3) Copy the correctionField from the Pdelay_Req message to the correctionField

of the Pdelay_Resp_Follow_Up message, and set correctionField of the Pdelay_Resp

message to 0.

7) Execute either Option A or Option B:

Option B:

i) In the Pdelay_Resp message, set the requestReceiptTimestamp field to

the seconds and nanoseconds portion of the time t2, and subtract any fractional

nanosecond portion of t2 from the correctionField.

ii) Issue the Pdelay_Resp message and generate timestamp t3 upon

sending based on the requirements of 9.5.14.

August 2021 IEEE 802.1 6

Maintenance Item #331 - 5

❑Relevant aspects of the meanLinkDelay computation (cont.)

iii) In the Pdelay_Resp_Follow_Up message, set the responseOriginTimestamp field

to the seconds and nanoseconds portion of the time t3, and add any fractional nanosecond

portion of t3 to the correctionField.

iv) Issue the Pdelay_Resp_Follow_Up message based on the requirements of 9.5.15.

d) The requester PTP Port on PTP Instance-A, upon receiving a Pdelay_Resp message

shall:

1) Generate timestamp t4 upon receipt of the Pdelay_Resp message.

2) To correct for asymmetry of the PTP Link connected to the ingress PTP Port,

compute the <correctedPdelayRespCorrectionField> by adding the value of the ingress

<delayAsymmetry> to the correctionField of the received Pdelay_Resp message.

4) If the twoStepFlag of the received Pdelay_Resp message is TRUE indicating that a

Pdelay_Resp_Follow_Up will be received, compute the <meanLinkDelay> as follows:

<meanLinkDelay> = [(t4 − t1) − (responseOriginTimestamp −

requestReceiptTimestamp) − <correctedPdelayRespCorrectionField> − correctionField of

Pdelay_Resp_Follow_Up]/2

August 2021 IEEE 802.1 7

Maintenance Item #331 – 6

❑In a)3) above, delayAsymmetry is subtracted from the Pdelay_Req

correctionField

❑In c)3) above, the Pdelay_Req correctionField is copied to the

Pdelay_Resp_Follow_Up correctionField, which means that the

negative of delayAsymmetry ends up in the Pdelay_Resp_Follow_Up

correctionField

❑In d)2) above, delayAsymmetry is added to the value of the

Pdelay_Resp correctionField

❑In the meanLinkDelay computation above, the correctionFields of

both Pdelay_Resp and Pdelay_Resp_Follow_Up are subtracted

▪This means that the delayAsymmetry value, which is included in the

Pdelay_Resp correctionField with a positive sign and in the

Pdelay_Resp_Follow_Up correctionField with a negative sign, cancels

August 2021 IEEE 802.1 TSN 8

Maintenance Item #331 – 7

❑Also in the meanLinkDelay computation

▪Any fractional ns part of t2 (the timestamp of the arrival of Pdelay_Req at the

responder) is subtracted from the correctionField of Pdelay_Resp, which is

subtracted when computing meanLinkDelay

▪This means that the fractional ns part of t2 is added (just as the

requestReceiptTimestamp is added)

▪Any fractional ns part of t3 (the timestamp of the departure of Pdelay_Resp

from the responder) is added to the correctionField of

Pdelay_Resp_Follow_Up, which is subtracted when computing

meanLinkDelay

▪This means that the fractional ns part of t3 is subtracted (just as the

responseOriginTimestamp is subtracted)

July 2021 IEEE 802.1 9

Maintenance Item #331 – 8

❑Relevant aspects of the meanLinkDelay computation for the CMLDS

case, as specified (and as published) in IEEE 802.1AS-2020,

subclauses 11.2.19 and 11.2.20 (note that only the relevant aspects

are summarized below, i.e., missing list items are not relevant; see

802.1AS-2020 for the full specification):

11.2.19.2.13 s: A variable whose value is +1 if this state machine is invoked

by the instance-specific peer-to-peer delay mechanism and –1 if this state machine is

invoked by the CMLDS. The data type for s is Integer8.

11.2.19.3.1 setPdelayReq(): Creates a structure containing the parameters (see

11.4) of a Pdelay_Req message to be transmitted, and returns a pointer, txPdelayReqPtr

(see 11.2.19.2.6), to this structure. The parameters are set as follows:

c) correctionField is set to

1) 0 if this state machine is invoked by the instance-specific peer-to-

peer delay mechanism, and

2) –delayAsymmetry (i.e., the negative of delayAsymmetry) if this

state machine is invoked by the CMLDS.

August 2021 IEEE 802.1 TSN 10

Maintenance Item #331 – 9

❑Relevant aspects of the meanLinkDelay computation (cont.):

11.2.20.3.1 setPdelayResp(): Creates a structure containing the parameters (see 11.4)

of a Pdelay_Resp message to be transmitted, and returns a pointer, txPdelayRespPtr

(see 11.2.20.2.3), to this structure. The parameters are set as follows:

c) requestReceiptTimestamp is set equal to the

pdelayReqEventIngressTimestamp (see 11.3.2) of the corresponding Pdelay_Req

message, with any fractional nanoseconds portion truncated.

d) correctionField is set equal to the following:

1) The fractional nanoseconds portion of the

pdelayReqEventIngressTimestamp of the corresponding Pdelay_Req message if this

state machine is invoked by the instance-specific peer-to-peer delay mechanism and

2) Minus the fractional nanoseconds portion of the

pdelayReqEventIngressTimestamp of the corresponding Pdelay_Req message if this

state machine is invoked by CMLDS.

August 2021 IEEE 802.1 TSN 11

Maintenance Item #331 – 10

❑Relevant aspects of the meanLinkDelay computation (cont.):

11.2.20.3.1 setPdelayRespFollowUp(): Creates a structure containing the parameters

(see 11.4) of a Pdelay_Resp_Follow_Up message to be transmitted, and returns a

pointer, txPdelayRespFollowUpPtr (see 11.2.20.2.4), to this structure. The parameters

are set as follows:

c) responseOriginTimestamp is set equal to the pdelayRespEventEgressTimestamp

(see 11.3.2) of the corresponding Pdelay_Resp message, with any fractional

nanoseconds truncated.

d) correctionField is set equal to the following:

1) The fractional nanoseconds portion of the

pdelayRespEventEgressTimestamp of the corresponding Pdelay_Resp message if this

state machine is invoked by the instance-specific peer-to-peer delay mechanism and

2) The sum of the correctionField of the corresponding Pdelay_Req message

and the fractional nanoseconds portion of the pdelayRespEventEgressTimestamp of the

corresponding Pdelay_Resp message if this state machine is invoked by CMLDS,

August 2021 IEEE 802.1 TSN 12

Maintenance Item #331 – 11

❑Relevant aspects of the meanLinkDelay computation (cont.):

11.2.19.3.4 computePropTime(): Computes the mean propagation delay on the PTP

Link attached to this MD entity, D, and returns this value. D is given by Equation (11-

5).

(11-5)

where

t4 is pdelayRespEventIngressTimestamp (see 11.3.2.1) for the Pdelay_Resp

message received in response to the Pdelay_Req message sent by the MD entity, in

nanoseconds; the pdelayRespEventIngressTimestamp is equal to the timestamp value

measured relative to the timestamp measurement plane, minus any ingressLatency (see

8.4.3)

t1 is pdelayReqEventEgressTimestamp (see 11.3.2.1) for the Pdelay_Req

message sent by the P2PPort entity, in nanoseconds

t2 is the sum of (1) the ns field of the requestReceiptTimestamp, (2) the seconds

field of the requestReceiptTimestamp multiplied by 109, and (3) the correctionField

multiplied by s (see 11.2.19.2.13) and then divided by 216 (i.e., the correctionField is

expressed in nanoseconds plus fractional nanoseconds), of the Pdelay_Resp message

received in response to the Pdelay_Req message sent by the MD entity

August 2021 IEEE 802.1 TSN 13

4 1 3 2() ()

2

r t t t t
D

 − − −
=

Maintenance Item #331 – 12

❑Relevant aspects of the meanLinkDelay computation (cont.):

t3 is the sum of (1) the ns field of the responseOriginTimestamp, (2) the seconds

field of the responseOriginTimestamp multiplied by 109, and (3) the correctionField

divided by 216 (i.e., the correctionField is expressed in nanoseconds plus fractional

nanoseconds), of the Pdelay_Resp_Follow_Up message received in response to the

Pdelay_Req message sent by the MD entity

r is the current value of neighborRateRatio for this MD entity (see 10.2.5.7)

August 2021 IEEE 802.1 TSN 14

Maintenance Item #331 – 13

❑For the case of CMLDS:

▪In 11.2.19.3.1, c)2), above, delayAsymmetry is subtracted from the

Pdelay_Req correctionField

▪In 11.2.20.3.3, d)2), above, the Pdelay_Resp_Follow_Up correctionField

is set equal to the sum of the Pdelay_Req correctionField and the

fractional ns portion of the pdelayRespEventEgressTimestamp, which

means that the negative of delayAsymmetry ends up in the

Pdelay_Resp_Follow_Up correctionField

▪This means that the negative of delayAsymmetry is included in t3

▪However, unlike in IEEE 1588-2019, 11.4.2, d)2) (slide 7),

delayAsymmetry is not added to the value of the Pdelay_Resp

correctionField, which means that delayAsymmetry is not included in t2

▪In the meanLinkDelay computation above, the correctionFields of both

Pdelay_Resp and Pdelay_Resp_Follow_Up are subtracted (t3 includes the

correctionField of Pdelay_Resp_Follow_Up, and is multiplied by s = -1, which

means it has a negative sign)

▪But, since delayAsymmetry is not added to the Pdelay_Resp correctionField,

the –delayAsymmetry of the Pdelay_Resp_Follow_Up correctionField does not

cancel

August 2021 IEEE 802.1 TSN 15

Maintenance Item #331 – 14

❑Also in the meanLinkDelay computation

▪t2 includes the correctionField of Pdelay_Resp multiplied by s = -1, and the

correctionField of Pdelay_Resp includes minus the fractional ns portion of the

pdelayReqEventIngress timestamp as indicated in 11.2.20.3.1 d)2) (see slide

11)

▪Since t2 is subtracted in Eq. (11-5) (see slide 13), the fractional ns part of t2 is

added (just as the requestReceiptTimestamp is added)

▪t3 includes the correctionField of Pdelay_Resp_Follow_Up, which is

subtracted when computing meanLinkDelay

▪This means that the fractional ns part of t3 is subtracted (just as the

requestReceiptTimestamp is subtracted)

July 2021 IEEE 802.1 16

Maintenance Item #331 - 15

❑The above indicates that the quantity delayAsymmetry must be

added to one of the terms when computing meanLinkDelay, to cancel

the –delayAsymmetry contribution that is already included

❑A simple fix is to add an additional term delayAsymmetry to t3 when

computing meanLinkDelay using Eq. (11-5)

❑With this fix, meanLinkDelay for the case of CMLDS is equal to the

mean of the link delays in the two directions, expressed in the

responder timebase (due to the presence of the neighborRateRatio r

that multiplies the term t4 – t1 in Eq. (11-5)

▪Note that this fix is simpler than the fix given in Maintenance Item #331

▪The writeup in the maintenance item is not correct; the quantity (4) of t2 in

the maintenance item writeup must be subtracted, not added

▪However, the fix described here is simpler; it can be obtained from the fix

in the maintenance writeup, but corrected by subtracting rather than

adding the quantity (4) in t2, by adding

neighborRateRatio*delayAsymmetry to t2 and to t3 (doing this cancels the

–neighborRateRatio*delayAsymmetry of term (4) of t2 and leaves

delayAsymmetry in term (4) of t3 of the maintenance writeup

August 2021 IEEE 802.1 TSN 17

Maintenance Item #331 - 16

❑Note: As indicated in 10.2.5.9 of 802.1AS-2020, delayAsymmetry is

expressed in the grandmaster timebase; however, this is not relevant

in the computation of meanLinkDelay because, with the fix, the

quantity is added and subtracted and, therefore, does not affect the

value of meanLinkDelay

❑Note also: The description of differences between the instance-

specific peer-to-peer delay mechanism and CMLDS in computations

of meanLinkDelay, in 11.2.17.2, must be revised to reflect the above.

▪In addition, the term (correctionField of Pdelay_Resp) in Eq. (11-6) must

be multiplied by s (see 11.2.19.2.13)

▪In addition, in NOTE 1 of 11.2.19.3.3, “subtract” must be changed to “add”

for consistency with b)4) of 11.2.19.3.3

❑Finally, the computation of upstreamTxTime in 11.2.14.2.1 f) in the

case of CMLDS must be the same as in the case of instance-specific

peer delay, i.e.,

upstreamTxTime = syncEventIngressTimestamp –

(meanLinkDelay/neighborRateRatio) – (delayAsymmetry/rateRatio)

August 2021 IEEE 802.1 TSN 18

Initiator

T

Responder

T+10.3

T1: 0.1
D1: 3

T2: 13.4 = 10.3+0.1+3

T3: 13.6 = t2+0.2
D2: 5

T4: 8.3

• delayAsy = (D2 – D1) / 2 = 1 (According to Clause 8.3)

• P2P mechanism (published 802.1AS-2020)

① Preq_TS = 0, Preq_CF = 0 (item b of 11.2.17.2)

② Presp_TS = 13, Presp_CF = 0.4 (item c of 11.2.17.2)

③ Presp_Follow_TS = 13, Presp_Follow_CF = 0.6 (item d of 11.2.17.2)

④ According to 11.2.19.3.4,

I. t1 = T1 = 0.1

II. t2 = Presp_TS + Presp_CF = 13.4 = T2

III. t3 = Presp_Follow_TS + Presp_Follow_CF = 13.6 = T3

IV. t4 = T4 = 8.3

⑤ According to 11.2.19.3.4,

MeanLinkDelay = [(t4-t1) – (t3-t2)]/2 = 4

• Common_P2P mechanism (published 802.1AS-2020)

① Preq_TS = 0, Preq_CF = -delayAsy = -1 (item b of 11.2.17.2)

② Presp_TS = 13, Presp_CF = -0.4 (item c of 11.2.17.2)

③ Presp_Follow_TS = 13, Presp_Follow_CF = Preq_CF + 0.6 = -0.4

(item d of 11.2.17.2)

④ According to 11.2.19.3.4,

I. t1 = T1 = 0.1

II. t2 = Presp_TS – Presp_CF = 13.4 (item e of 11.2.17.2)

III. t3 = Presp_Follow_TS + Presp_Follow_CF = 12.6

IV. t4 = T4 = 8.3

⑤ According to 11.2.19.3.4,

MeanLinkDelay = [(t4-t1) – (t3-t2)]/2 = 4.5

0.2
Correct

Incorrect

neighborRatito is 1.

Maintenance Item #331 - 17 (Example 1)

August 2021 IEEE 802.1 TSN 19

Common P2P mechanism with correction of this presentation

III. t3 = Presp_Follow_TS + Presp_Follow_CF + delayAsy

= 13 – 0.4 + 1 = 13.6

MeanLinkDelay = [(8.3 – 0.1) – (13.6 – 13.4)]/2 = 4 Correct

Initiator

T

Responder

1.1T+10.3

T1: 0.1

D1: 3

T2: 13.71 = 3*1.1+10.41

T3: 13.93 = T2+1.1*0.

2D2: 5

T4: 8.3

1.1*0.2

10.41

• dealyAsy = (D2 – D1) / 2 = 1 (According to Clause 8.3)

• P2P mechanism (published 802.1AS-2020)

① Preq_TS = 0, Preq_CF = 0

② Presp_TS = 13, Presp_CF = 0.71

③ Presp_Follow_TS = 13, Presp_Follow_CF = 0.93

④ According to 11.2.19.3.4,

I. t1 = T1 = 0.1

II. t2 = Presp_TS + Presp_CF = 13.71 = T2

III. t3 = Presp_Follow_TS + Presp_Follow_CF = 13.93 = T3

IV. t4 = T4 = 8.3

⑤ According to 11.2.19.3.4

meanLinkDelay = [1.1*(t4-t1) – (t3-t2)]/2 =

[1.1*(8.3-0.1)-(13.93-13.71)/2 =

(1.1*8.2 – 0.22)/2 = (9.02-0.22)/2= 4.4

• Common_P2P mechanism (published 802.1AS-2020)

① Preq_TS = 0, Preq_CF = -delayAsy = -1

② Presp_TS = 13, Presp_CF = – 0.71

③ Presp_Follow_TS = 13, Presp_Follow_CF = Preq_CF + 0.93 = -0.07

④ According to 11.2.19.3.4,

I. t1 = T1 = 0.1

II. t2 = Presp_TS – Presp_CF = 13.71

III. t3 = Presp_Follow_TS + Presp_Follow_CF = 12.93

IV. t4 = T4 = 8.3

⑤ According to 11.2.19.3.4

meanLinkDelay = [1.1*(t4-t1) – (t3-t2)]/2 =

[1.1*(8.3-0.1)-(12.93-13.71)/2 =

(1.1*8.2 +0.78)/2 = (9.02+0.78)/2= 4.9

neighborRateRatio isn’t 1.

Maintenance Item #331 - 18 (Example 2)

August 2021 IEEE 802.1 TSN 20

Correct

Incorrect

Common P2P mechanism with correction of this presentation

III. t3 = Presp_Follow_TS + Presp_Follow_CF + delayAsy

= 13 – 0.07 + 1 = 13.93

MeanLinkDelay = [1.1(8.3 – 0.1) – (13.93 – 13.71)]/2 = 4.4 Correct

❑Change the description of t3 in 11.2.19.3.4 to read:

t3 is the sum of (1) the ns field of the responseOriginTimestamp, (2) the

seconds field of the responseOriginTimestamp multiplied by 109, (3) the

correctionField divided by 216 (i.e., the correctionField is expressed in

nanoseconds plus fractional nanoseconds), of the Pdelay_Resp_Follow_Up

message received in response to the Pdelay_Req message sent by the MD entity,

and (4) delayAsymmetry if this state machine is invoked by CMLDS

Maintenance Item #331 Proposal – 1

August 2021 IEEE 802.1 TSN 21

❑Change Note 3 of 11.2.19.3.4, including Eq. (11-6), to read (in Eq. (11-6),

the term (correctionField of Pdelay_Resp) must be multiplied by s):

NOTE 3—In IEEE Std 1588-2019, the computation of Equation (11-5) meanLinkDelay is

organized differently from the organization used for instance-specific peer delay in the

present standard. Using the definitions of t2 and t3 above, Equation (11-5) can be

rewritten as shown in Equation (11-6).

D = [r(t4 – t1) – (responseOriginTimestamp – requestReceiptTimestamp) +

s(correctionField of Pdelay_Resp) –

(correctionField of Pdelay_Resp_Follow_Up)] / 2

where each term is expressed in units of nanoseconds as described in the definitions of

t1, t2, t3, and t4 above. In IEEE Std 1588-2019, the fractional nanoseconds portion of t2

is subtracted from the correctionField of Pdelay_Resp, rather than added as in this the

present standard for instance-specific peer delay [see 11.2.20.3.1 d)1]; however, the

correctionField of Pdelay_Resp is then subtracted in Equation (11-6) rather than added

[in Eq. (11-6) for instance-specific peer delay, where s = 1], and the two minus signs

cancel each other. The computations of D in this standard and IEEE Std 1588-2019 are

mathematically equivalent. The organization of the computation used in IEEE Std 1588-

2019 must be used with CMLDS in the present standard for interoperability with IEEE

Std 1588-2019 (see 11.2.17.2).

Maintenance Item #331 Proposal – 1

August 2021 IEEE 802.1 TSN 22

❑Change NOTE 1 of 11.2.19.3.3 to read:

NOTE 1—If delayAsymmetry does not change during the time interval over which

neighborRateRatio is computed, it is not necessary to subtract add it if this state

machine is invoked by CMLDS because in that case it will be canceled when

computing the difference between earlier and later

correctedResponderEventTimestamps.

▪i.e., “subtract” is changed to “add”

❑Edit 11.2.14.2.1 f) as indicated on the following two slides

▪Note that in the revision, delayAsymmetry must be divided by the sum of

rateRatio and neighborRateRatio, because the current value of rateRatio is the

value at the upstream PTP Instance, while the value needed is the value at the

receiving PTP Instance. rateRatio is updated by the PortSyncSyncReceive

state machine (see 10.2.8), which has not been invoked yet.

❑Edit 11.2.17.2 as indicated in the attached pdf file (it can be accessed by

making the panel on the left side of the Acrobat window visible and then

clicking on the paper clip; the attached pdf file will then appear)

Maintenance Item #331 Proposal – 2

August 2021 IEEE 802.1 TSN 23

f) upstreamTxTime is set equal to the syncEventIngressTimestamp for the most recently

received Sync message (see 11.4.3), minus the mean propagation time on the PTP Link

attached to this PTP Port (meanLinkDelay; see 10.2.5.8) divided by neighborRateRatio

(see 10.2.5.7), and, if and only if the state machine is invoked by the instance-specific

peer-to-peer delay mechanism, minus delayAsymmetry (see 10.2.5.9) for this PTP Port

divided by the sum of rateRatio and the quantity neighborRateRatio – 1.0 [see item e) in

this subclause]. The syncEventIngressTimestamp is equal to the timestamp value measured

relative to the timestamp measurement plane, minus any ingressLatency (see 8.4.3). The

upstreamTxTime can be written as follows:

State machine invoked by instance-specific peer-to-peer delay mechanism:

upstreamTxTime = syncEventIngressTimestamp –(meanLinkDelay/neighborRateRatio) –

(delayAsymmetry/(rateRatio + neighborRateRatio – 1.0))

State machine invoked by CMLDS:

upstreamTxTime = syncEventIngressTimestamp – (meanLinkDelay/neighborRateRatio)

Maintenance Item #331 Proposal – 3

August 2021 IEEE 802.1 TSN 24

NOTE 1—The mean propagation time is divided by neighborRateRatio to convert it from

the time base of the PTP Instance at the other end of the attached PTP Link to the time

base of the current PTP Instance. If the instance-specific peer-to-peer delay mechanism is

used (i.e., portDS.delayMechanism is P2P), The quantity delayAsymmetry is divided by

rateRatio to convert it from the time base of the Grandmaster Clock to the time base of the

current PTP Instance. The first These two quotients is are then subtracted from

syncEventIngressTimestamp, and the second quotient is subtracted from

syncEventIngressTimestamp if the instance-specific peer-to-peer delay mechanism is used.

The syncEventIngressTimestamp is measured relative to the time base of the current PTP

Instance. See 11.2.17.2 for more detail.

Maintenance Item #331 Proposal – 4

August 2021 IEEE 802.1 TSN 25

Maintenance Item #332 – 1

❑When using the BMCA in both IEEE Std 802.1AS-2011 and IEEE Std

802.1AS-2020, an Announce message is sent on a port whenever the state of

the port changes to MasterPort

❑This behavior is neither required nor prohibited by IEEE Std 1588-2008 and

IEEE Std 1588-2019

▪1588 requires only that Announce messages be sent at an average rate based on the

announce interval (and with requirements on the allowed variability of the actual rate);

however, an Announce message need not be sent at the instant the port state

changes to MASTER

▪However, during the development of 802.1AS-2011, it was desired that an Announce

message be sent when the state changes to MasterPort

•One reason for this was to ensure that information on a new grandmaster (GM) be

propagated as soon as possible so that downstream PTP Instances know who the

current GM is (this was needed because the Sync messages do not indicate the

current GM)

❑While this behavior is specified correctly for BMCA, the specification is not

correct for the case of external port configuration

▪For external port configuration, the specifications of 1588-2019 do not result in an

Announce message being sent immediately when the port state change to MasterPort

❑The intent of maintenance item #332 is to fix this

August 2021 IEEE 802.1 TSN 26

Maintenance Item #332 – 2

August 2021 IEEE 802.1 TSN 27

newInfo = TRUE;

announceSlowdown = FALSE;

numberAnnounceTransmissions =

FALSE;

TRANSMIT_INIT

BEGIN || !instanceEnable

 newInfo = FALSE;

 txAnnounce();

 if (announceSlowdown)

 {

 if (numberAnnounceTransmissions >=

 announceReceiptTimeout)

 {

 interval2 = announceInterval;

 numberAnnounceTransmissions = 0;

 announceSlowdown = FALSE;

 }

 else

 {

 interval2 = oldAnnounceInterval;

 numberAnnounceTransmissions++;

 }

 }

 else

 {

 numberAnnounceTransmissions = 0;

 interval2 = announceInterval;

 }

TRANSMIT_ANNOUNCE

UCT

currentTime >= announceSendTime &&

((selected && !updtInfo) ||

externalPortConfigurationEnabled)

newInfo && (selectedState == MasterPort) &&

(currentTime < announceSendTime) && ((selected

&& !updtInfo) || externalPortConfigurationEnabled)

&& !asymmetryMeasurementMode

announceSendTime =

currentTime + interval2;

IDLE

newInfo = newInfo ||

(selectedState == MasterPort)

TRANSMIT_PERIODIC

UCT

UCT

❑An Announce message is

transmitted by the

PortAnnounceTransmit state

machine when the global variable

newInfo is set to TRUE

❑From the IDLE state, if newInfo is

TRUE and selectedState is

MasterPort (and currentTime is

not yet announceSendTime), the

right branch is taken and an

Announce message is sent

Maintenance Item #332 – 3

❑In the case of BMCA, newInfo is

set to TRUE as a result of actions

by the PortStateSelection state

machine (via the function

updtStatesTree(), see 10.3.13.2.4)

and the PortAnnounceInformation

state machine

❑updtStatesTree() is invoked when

reselect[j] is becomes TRUE for

any port j (i.e., the triggering of the

BMCA)

▪This could occur, e.g., due to receipt

of an Announce message (see the

PortAnnounceInformation state

machine in 10.3.12 and on the next

slide)

August 2021 IEEE 802.1 TSN 28

systemIdentityChange = FALSE;

asymmetryMeasurementModeChange = FALSE;

clearReselectTree();

updtStatesTree();

setSelectedTree();

STATE_SELECTION

updtStateDisabledTree();

INIT_BRIDGE

(BEGIN || !instanceEnable) &&

!externalPortConfigurationEnabled

UCT

reselect[1] || reselect[2] || reselect[N] ||

systemIdentityChange || asymmetryMeasurementModeChange

Maintenance Item #332 – 4

❑updtStatesTree() determines the

port state in item f) of 10.3.13.2.4;

in f)3), f)4), and f)8) of 10.3.13.2.4,

the port state is set to MasterPort

and the variable updtInfo is set to

TRUE

❑This in turn causes the

PortAnnounceInformation state

machine to transition from the

CURRENT state to the UPDATE

state, which in turn sets updtInfo

to FALSE and newInfo to TRUE

▪As indicated two slides previously,

this causes the

PortAnnounceTransmit state

machine to transmit an Announce

message

August 2021 IEEE 802.1 TSN 29

(((!portOper || !ptpPortEnabled || !asCapable) &&

(infoIs != Disabled)) || BEGIN || !instanceEnable)

&& !externalPortConfigurationEnabled

/* Sending port is same master port */

announceReceiptTimeoutTime = currentTime +

announceReceiptTimeoutTimeInterval;

 recordOtherAnnounceInfo();

rcvdMsg = FALSE;

rcvdAnnouncePtr = FALSE;

REPEATED_MASTER_PORT

 /* Sending port is new master port */

 portPriority = messagePriority;

 portStepsRemoved = rcvdAnnouncePtr->stepsRemoved;

 recordOtherAnnounceInfo();

 TEMP = 16+rcvdAnnouncePtr->logMessageInterval;

 announceReceiptTimeoutTimeInterval = announceReceiptTimeout*(10
9
)*2

TEMP
;

 announceReceiptTimeoutTime = currentTime + announceReceiptTimeoutTimeInterval;

 if (useMgtSettableLogSyncInterval)

 TEMP = mgtSettableLogSyncInterval;

 else

 TEMP = initialLogSyncInterval;

 syncReceiptTimeoutTimeInterval = syncReceiptTimeout*(10
9
)*2

TEMP
;

 syncReceiptTimeoutTime = currentTime + syncReceiptTimeoutTimeInterval;

 infoIs = Received; reselect = TRUE; selected = FALSE; rcvdMsg = FALSE;

 rcvdAnnouncePtr = FALSE;

SUPERIOR_MASTER_PORT

selected &&

updtInfo

selected && updtInfo

(infoIs == Received &&

(currentTime >= announceReceiptTimeoutTime) &&

!updtInfo && !rcvdMsg) ||

(currentTime >= syncReceiptTimeoutTime && gmPresent)

portOper &&

ptpPortEnabled &&

asCapable

rcvdMsg

UCT

rcvdInfo == SuperiorMasterInfo && !asymmetryMeasurementMode

rcvdInfo == RepeatedMasterInfo &&

!asymmetryMeasurementMode

(rcvdInfo == InferiorMasterInfo || rcvdInfo ==

OtherInfo) && !asymmetryMeasurementMode

rcvdMsg &&

!updtInfo

INFERIOR_MASTER_OR_OTHER_PORT

rcvdMsg = FALSE;

rcvdAnnouncePtr = FALSE;

CURRENT

rcvdInfo = rcvInfo();

rcvdMsg = FALSE;

announceReceiptTimeoutTime =

currentTime;

infoIs = Disabled; reselect = TRUE;

selected = FALSE;

DISABLED

AGED

infoIs = Aged;

reselect = TRUE; selected = FALSE;

portPriority = masterPriority;

portStepsRemoved =

masterStepsRemoved;

updtInfo = FALSE; infoIs = Mine;

newInfo = TRUE

UPDATE

RECEIVE

UCT

UCT

UCT

Maintenance Item #332 – 5

❑In the published 802.1AS-2020,

when external port configuration

is used newInfo is not set to

TRUE, and an Announce

message is not immediately sent

❑In external port configuration,

the port state is set by the

function updtPortState(thisPort)

in the PortStateSettingExt state

machine

August 2021 IEEE 802.1 TSN 30

updtPortState(thisPort);

disabledExt = FALSE;

reenabledExt = FALSE;

asymmetryMeasurementModeChangeThisPort = FALSE;

rcvdPortStateInd = FALSE;

STATE_SETTING

resetStateTree(thisPort);

INITIALIZE

(BEGIN || !instanceEnable) &&

externalPortConfigurationEnabled

rcvdPortStateInd ||

asymmetryMeasurementModeChangeThisPort

rcvdPortStateInd || disabledExt || reenabledExt ||

asymmetryMeasurementModeChangeThisPort

Maintenance Item #332 – 6

❑In external port configuration, the

PortAnnounceInformation state

machine is not invoked because

the BMCA is not triggered by

receipt of an Announce message

▪Instead, the

PortAnnounceInformationExt state

machine is invoked, which simply

records information contained in the

Announce message (e.g., time

properties information)

❑The problem can be fixed by

setting newInfo to TRUE in item

c)3) of updtPortState(j), where the

port state is set

August 2021 IEEE 802.1 TSN 31

rcvdAnnouncePAIE = FALSE;

INITIALIZE

((!portOper || !ptpPortEnabled || !asCapable) ||

BEGIN || !instanceEnable) &&

externalPortConfigurationEnabled

rcvInfoExt();

recordOtherAnnounceInfo();

 portStepsRemoved = messageStepsRemoved + 1;

//messageStepsRemoved is set by rcvInfoExt()

RECEIVE

portOper &&

ptpPortEnabled &&

asCapable &&

rcvdAnnouncePAIE

portOper &&

ptpPortEnabled &&

asCapable &&

rcvdAnnouncePAIE

Maintenance Item #332 – 7

❑In addition, minor changes are needed for the overview diagram for

External Port Configuation (Figure 10-12)

▪The variable newInfo should be removed from the arrow going from the

PortAnnounceInformationExt block to the PortAnnounceTransmit block

▪The variable newInfo should be added to the arrow going from the

PortStateSetting block to the PortAnnounceTransmit block.

August 2021 IEEE 802.1 TSN 32

Maintenance Item #332 – 8

❑Add the following sentence to item c)3)of the updtPortState(j) function

(see 10.3.15.2.2): If portStateInd is equal to MasterPort, set newInfo

to TRUE. Item c)3) then reads:

▪3) selectedState[j] is set to portStateInd. If portStateInd is equal to

MasterPort, set newInfo to TRUE.

❑In Figure 10-12, remove the variable newInfo from the arrow going

from the PortAnnounceInformationExt block to the

PortAnnounceTransmit block (note that newInfo is not set by the

PortAnnounceInformationExt block)

❑In Figure 10-12, add the variable newInfo to the arrow going from the

PortStateSetting block to the PortAnnounceTransmit block

August 2021 IEEE 802.1 TSN 33

July 2021 IEEE 802.1 34

Thank you

11.2.17.2 Differences between instance-specific peer-to-peer delay mechanism and CMLDS in computations

of mean linkmeanLinkDelay delay and effect of delayAsymmetryneighborRateRatio

The MDPdelayReq state machine (see 11.2.19),) and MDPdelay_Resp state machine (see 11.2.20), and

MDSyncReceiveSM state machine (see 11.2.14) perform various computations of mean link delaymeanLinkDelay

and of the effect of delayAsymmetry and neighborRateRatio differently, depending on whether the respective

computations are done using the instance-specific peer-to-peer delay mechanism or using CMLDS. The resulting

values of meanLinkDelay and neighborRateRatio are the same for both instance-specific peer delay and CMLDS;

however, the organization of the computations for instance-specific peer delay and CMLDS are different. Some of

the computations are done at the Initiator and some of the computations are done at the Responder. It is necessary

for the Initiator and the Responder to both perform the instance-specific peer delay computations or both perform

the CMLDS computations in order to obtain the correct results for meanLinkDelay and neighborRateRatio. The

differences are described as follows:

a) Both iInstance-specific peer delay and CMLDS computes mean link delaymeanLinkDelay averaged over

the two directions, and adds delayAsymmetry separately when computing upstreamTxTime by the

setMDSyncReceiveMDSR() function of the MDSyncReceive state machine. However, in the computation

of meanLinkDelay, CMLDS subtracts delayAsymmetry when computing

pdelayRequestEventEgressTimestamp (at the Initiator, see Figure 8.1) (the quantity t1 in the function

computePropTime() is later set equal to the pdelayRequestEventIngressTimestamp) and adds

delayAsymmetry back when computing the quantity t3 in the function computePropTime() (at the Initiator),

while instance-specific peer delay does not subtract and add back delayAsymmetry. while CMLDS corrects

the computed mean link delay for delayAsymmetry and therefore does not need to add it separately (see

11.2.14.2.1).

b) Instance-specific peer delay sets the correctionField of a transmitted Pdelay_Req message to 0, while

CMLDS sets it to –delayAsymmetry (see 11.2.19.3.1).

c) Instance-specific peer delay sets the correctionField of Pdelay_Resp equal to the fractional nanoseconds

portion of the pdelayReqEventIngressTimestamp of the corresponding Pdelay_Req, while CMLDS sets the

correctionField of Pdelay_Resp equal to minus the fractional nanoseconds portion of the

pdelayReqEventIngressTimestamp of the corresponding Pdelay_Req (see 11.2.20.3.1).

d) Instance-specific peer delay sets the correctionField of Pdelay_Resp_Follow_Up equal to the fractional

nanoseconds portion of the pdelayRespEventEgressTimestamp, while CMLDS sets the correctionField of

Pdelay_Resp_Follow_Up equal to the sum of the correctionField of the corresponding Pdelay_Req and the

fractional nanoseconds portion of the pdelayRespEventEgressTimestamp (see 11.2.20.3.3).

e) When computing mean link delaymeanLinkDelay [i.e., the quantity D in Equation (11-5), see 11.2.19.3.4]:

1) In computing the quantity t2, the correctionField of the Pdelay_Resp message, divided by 216, is

added when computing the quantity t2 if instance-specific peer delay is used, while it is subtracted

if CMLDS is used (see 11.2.19.3.4).

1)2) In computing the quantity t3, the quantity delayAsymmetry is added if CMLDS is used

f) When computing neighborRateRatio, the computation of the correctedResponderEventTimestamp must be

corrected for delayAsymmetry if, and only if, CMLDS is used. The reason for this correction is that, with

CMLDS, delayAsymmetry was subtracted from the Pdelay_Req correctionField, and then the

Pdelay_Resp_Follow_Up correctionField was set equal to the sum of the Pdelay_Req correctionField and

the fractional nanoseconds portion of the PdelayRespEventEgressTimestamp, while with instance-specific

peer delay, the correctionField of Pdelay_Req was set equal to 0 (see 11.2.19.3.1, 11.2.19.3.3, and

11.2.20.3.3).

The computations in this standard for the instance-specific peer-to-peer delay mechanism are the same as in

IEEE Std 802.1AS-2011, for backward compatibility. However, the computations in this standard for

CMLDS need to bemust be consistent with IEEE Std 1588-2019 because CMLDS can be used by other PTP

profiles, in addition to the PTP profile included in IEEE Std 802.1AS, that might be present in a gPTP node.

Therefore, the computations for the instance-specific peer-to-peer delay mechanism and CMLDS are different (i.e.,

are organized differently), even though they produce the same results.

