Block Address Registration and Claiming (BARC)

Roger Marks EthAirNet Associates 2021-03-12

Acknowledgements

thanks to Antonio de la Oliva for review and constructive comments

thanks to other 802.1 WG and 1722 WG participants for constructive discussions during earlier comment resolution, particularly to Mick Seaman, Norm Finn, Don Pannell, and Max Turner

Introduction

- P802.1CQ/D0.5 was reviewed in Task Group Ballot.
- Comment resolution indicated that significant changes were required.
- This contribution summarizes an approach to the next draft.
- Approach is based on address blocks, as raised during comment resolution.
- Each Address Block (AB) is identified by an Address Block Identifier (ABI).
- Some ABIs (CABIs) are designated for self-claiming.
- Other ABIs (RABIs) are designated for management by a Registrar.
- Address Registration and Claiming (ARC) protocol is outlined here, with:
 - Block Address Registration and Claiming (BARC)
 - Address-Range (AR) claiming, incorporating MAAP from IEEE 1722, per comment resolution.
 - not using any BARC addresses

BARC assigns MAC Addresses in Address Blocks

- 1) Address Blocks (ABs) include local addresses.
- 2) An AB includes both unicast and multicast address subblocks.
- 3) No address falls within more than one AB.
- 4) An AB Identifier (ABI) identifies each AB.
- 5) Registrars hold multi-blocks sets of ABs, identified by multi-block identifiers (MBIs).
- 6) An ABI within an MBI is a registrable ABI (RABI).
 - identifies Registrable Address Blocks (RABs) holding Registrable Addresses (RAs)
- 7) An ABI not in an MBI is a Claimable ABI, claimable by a Claimant without a Registrar.
 - identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)
- 8) Each ABI and MBI is a multicast address and not in any AB.
- 9) A large set of Temporary Unicast Addresses (TUAs) is specified
 - for initial discovery by Claimant lacking a unicast address.

MAC Address Categorization

determinable via inspection:	Expanded name	Role	I/G	indicates, by inspection
not specified by BARC				
СА	claimable address, in claimable address block (CAB)	BA	U,M	CABI, CABI type, CAB (including all other CAs in CAB)
CABI	CAB identifier	BI	Μ	CABI type, CAB
MBI	multi-block identifier	MBI	Μ	MBI type, RABI type, RABIs
RA	registrable address, in registrable address block (RAB)	ВА	U,M	RABI, RABI type, MBI, MBI type, all other RAs in RAB
RABI	RAB identifier	BI	М	RABI type, MBI, MBI type, RAB (including all other RAs in RAB)
RABIA	(unicast) RABI address (one of many)	BI	U	RABI
TUA	temporary unicast address		U	note: ~6.8E10 to choose among

BA= block address ; BI = block identifier

BARC MAC Address Structure

			_	
N11	(0		always 0 (remaining 15 values for non-BARC use)
N10	1 1	1	Μ	M is the usual multicast (I/G) bit; 111 is local "SAI" range per IEEE Std 802c
N9	p r	j	k	address block includes subblocks of 16 ^{jk} contiguous addresses
N8	n a	b	с	multi-block includes 16 ^{abc} address blocks (N8 unstructured in CABI)
N7				
N6				 M, p, r, and n bits distinguish
N5				Block Addresses (BAs) and Block Identifiers (BIs) - e.g. CABI has M=1, p=0, r=0
N6				see Appendix for details
N5				
N2				
N1				
NO				
12 nibbles per 48-bit address	-			

Registrar

- Registrar maintains an inventory of RABIs (within MBIs).
 - a protocol specifies how Registrars acquire MBIs.
 - set of RABIs is disjoint from the set of CABIs
 - AB is either claimable (CABI) or registrable (RABI); not both
- Registrar listens for all messages to a CABI.
 - M=1, p=0, r=0, i.e. DA begins 0000-1111-00
 - [MMRP NumberOfValues field is 13 bits]
- Registrar can respond to a DISCOVER with an OFFER of an AB in its inventory.
 - The OFFER defends the DISCOVER message's CABI.
 - Client claims an offered RABI, similar to claiming CABI.
 - Registrar does not assign RABI but tracks its registration.
 - OFFER cites one of the RABI's RABIA, not the RABI directly.
 - claim is then sent to Register at the unicast RABIA
 - has some advantages
- Claimant need not be aware of Registrar when initiating a claim.

Operation with Registrars

if Registrar expected at specific address

BARC Design

- A BARC architecture follows, with details including state machines.
 - additional details in Appendix
- Listened carefully to comments and discussion raised in P802.1CQ/D0.5 TG Ballot
- BARC (Block Address Registration and Claiming) is put into the broader context of Address Registration and Claiming (ARC), which supports both:
 - address blocks (ABs), identified by Address Block Identifiers (ABIs)
 - address ranges (ARs), excluding addresses specified by BARC
- ARC is the general protocol
 - BARC handles BI Registration and Claiming
 - existing MAAP handles AR Claiming

ARC Architecture – ARC Claimant

BARCPDU Summary

field name	purpose	content
DA	dest addresss	DA
SA	source address	(TUA allowed if S=D or A)
E	Ethertype	[tbd; could be 22F0 (MAAP Ethertype)]
t	subtype	[tbd, per 1722 WG; see IEEE 1722 Table 6]
S1	State	D, C, V, R, T, MD, MC, N(null)
1	identifier	(an address)
S2	State	O, S, N(null)
12	identifier	
Т	token	

AVTPDU Summary

field name	purpose	content
DA	dest addresss	91:E0:F0:00:FF:00 for MAAP multicast
E	Ethertype	22F0 (MAAP Ethertype)
t	subtype	FE per IEEE 1722 Table 6

ABI Claimant – BI State Transition Table

		State (E	BI/CABI)	State (BI/RABIA)				
Event	VACANT (V)	DISCOVERY (D)	CLAIMED (C)	OFFERED (O)	REGISTERED (R)			
TryT(da,sa)!	sBARC(BI:T,sa:S){da,sa} Start DiscoverT_Timer DISCOVERY							
DiscoverT_Timer!		Outcome(T) VACANT						
BARC(O)!	FYI(Offer) StartOffer_Timer OFFERED							
Offer_Timer!				VACANT				
Accept(sa,token)!				Ingress(sa,pass) R_sa==sa R_token==token sBARC(BI:R,sa:S,token){BI,sa} Start Renew_Timer(R) REGISTERED				
BARC(R,sa,token)!					if sa= R_sa and token= R_token then Start Renew_Timer(R)			
BARC(V,sa,token)!					if sa= R_sa and token= R_token then Ingress(sa,filter) FYI(Revoked) VACANT			
TryC(sa)!	sBARC(BI:D,sa:S){BI,sa} Start DiscoverC_Timer DISCOVERY							
DiscoverC_Timer!		Ingress(BI,pass) Outcome(C) sBARC(BI:C,0:N){BI,sa} Start Renew_Timer(C) CLAIMED						
BARC(C)!		Outcome(V) VACANT	sBARC(BI:C,0:N){BI} FYI(Alert)					
BARC(D,SA)!		Outcome(V) VACANT	da=SA sBARC(BI:C,0:N){da}					
Delete()!		VACANT	sBARC(BI:V,0:N){BI} Ingress(BI,filter) VACANT		sBARC(BI:V, R_sa,R_token){BI,R_sa} Ingress(BI,R_sa) VACANT			
Renew_Timer! or Renew()!			FYI(Renewed) sBARC(BI:C,0:N){BI,sa} Start Renew_Timer(C)		FYI(Renewed) sBARC(BI:R,sa:S,token){BI,sa} Start Renew_Timer(R)			

BI Claimant/Registrar Procedure: Multicast

BI Claimant/Registrar Procedure: Targeted

Registration, Renewal, and Withdrawal of an Offer

BARC Registrar: AVTPDU Processor

AR Claimant Procedure

AR State Transition Table

	State							
Event	VACANT (V)	DISCOVERY (D)	ACQUIRED (A)					
Add(AR)!	sMAAP(Begin(AR)!) DISCOVERY							
rMAAP(AR:Defend)!		Outcome(A,AR) ACQUIRED						
rMAAP(AR:Initial)!		Outcome(F,AR) VACANT	Outcome(X)[AR] VACANT					

rMAAP(AR:State!) invokes an event at the state machine when the MAAP state changes to State

sMAAP(Action!) invokes Action! event at MAAP state machine

ARC Claimant Application Process: Add Claim

BARC Architecture – Registrar

addressed to:

any CABI

RABI Registrar: RABIA State Transition Table

	State (RABIA)									
Event	VACANT (V)	OFFERED (I)	REGISTERED (R)	EXPIRED (E)						
InviteD(CABI,RABIA,da)!	Ingress(RABIA,pass) sBARC(CABI:C,RABIA:O){da,RABIA} Start Offer_Timer OFFERED			Ingress(RABIA,pass) sBARC(CABI:C,RABIA:O){da,RABIA} Start Offer_Timer OFFERED						
InviteT(S1,RABIA,da)!	Ingress(RABIA,pass) sBARC(0:S1,RABIA:O){da,RABIA} Start Offer_Timer OFFERED			Ingress(RABIA,pass) sBARC(0:S1,RABIA:O){da,RABIA} Start Offer_Timer OFFERED						
BARC(R,sa,token)!		R_sa==sa R_token==token Start Register_Timer(R) sBARC(RABIA:R, R_sa:S, token){R_sa,RABIA} REGISTERED	if sa= R_sa and token= R_token then Start Register_Timer(R)							
Offer_Timer!		Ingress(RABIA,filter) Start Expire_Timer EXPIRED								
Register_Timer!			sBARC(RABIA:V, R_sa:S,token){R_sa,RABIA} Ingress(RABIA,filter) Start Expire_Timer EXPIRED							
BARC(V,sa,da)!			if sa= R_sa and token= R_token then Ingress(sa,filter) Start Expire_Timer EXPIRED							
Expire_Timer!			sBARC(RABIA:V, R_sa:S,token){R_sa,RABIA} Ingress(RABIA,filter) Start Expire_Timer EXPIRED	VACANT						

MBI Claimant Procedure

claiming an MBI

MBI Claimant: MBI State Transition Table

		State (MBI)					
Event	VACANT (MV)	DISCOVERY (MD)	CLAIMED (MC)				
Try(sa)!	sBARC(MBI:MD,sa:S){MBI,sa} Start MDiscoverTimer DISCOVERY						
MDiscoverTimer!		ingress(MBI,pass) Outcome(MC) sBARC(MBI:MC,0:N){MBI} Start Renew_Timer CLAIMED					
BARC(MC)!		Outcome(MV) VACANT	sBARC(MBI:MC,0:N){MBI} FYI(Alert)				
BARC(MD,SA)!		Outcome(MV) VACANT	da=SA sBARC(MBI:MC,0:N){da}				
Delete()!		VACANT	sBARC(MBI:MC,0:N){MBI} ingress(MBI,filter) VACANT				
Renew_Timer! or Renew()!			sBARC(MBI:MC,0:N){MBI} FYI(Renewed) Start Renew_Timer				

VLANs

• All state machines are specified per VLAN.

• All address assignments are specific to the VLAN in which the state machine operates.

• All addresses adopted are specific to the VLAN under which the assignment was completed.

• Usage of any address is limited to the VLAN under which it was obtained.

• Any address assigned within the context of a VLAN shall not be reassigned except within the context of the VLAN in which it was assigned.

- Due to the possibility that the same unicast address may be assigned in different VLANs, Independent VLAN Learning (IVL) is required in bridges, per IEEE Std 802.1Q Annex F (F.1.2).
- This requirement could be relaxed when assigned unicast addresses are declared via MMRP.

Summary

- Claimants operate with or without Registrars.
- Multiple registrars are supported, operating with disjoint multi-blocks.
- The block discretization provides:
 - a vast set of addresses to a LAN
 - though operating entirely within 1/16 of the SAI quadrant of local address space
 - a large set of temporary unicast addresses
 - operational efficiency and simplicity
 - both unicast and multicast addresses (1/2 or 2/3 unicast) to Claimant
 - including one unicast and multicast subblock with the same range, except for the M bit
 - could be exploited
 - devices needing both unicast and multicast addresses need make only one claim
- Could integrate with MMRP to limit propagation and eliminate learning of unicast AB content.
 - MMRP needs to efficiently handle address ranges
 - BARP could be specified as alternative MRP application

Appendix 1

• additional details on BARC addresses and identifiers

CABI and CA

MBI, RABI, RA, RABIA

N11 N10 N9 N8 N7 N6 N5	0 1 1 1 1 1 0 0 j k X8 X7 X6 X5	0 1 1 1 * 1 0 j k X8 X7 X6 X5	0 1 1 1 0 0 0 j k X8 X7 X6 X5	 0 1 1 1 1 0 1 j k 1 a b c X7 X6 X5	MBI identifies its RABIs	0 1 1 1 1 1 0 1 j k 0 a b c X7 X6 X5	0 1 1 1 \$ 1 1 j k a b c X7 X6 X5	0 1 1 1 0 0 1 j k 0 a b c X7 X6 X5
N4 N3	X4 X3	X4 X3	X4 X3	X4/0 X3/0	<i>abc</i> nibbles for MBI type <i>jk/abc</i> ⁺	X4/# X3/#	X4/# X3/#	X4/# X3/#
N2 N1 N0	X2/0 X1/0 X0/0	X2/* X1/* X0/*	X2/* X1/* X0/*	X2/0 X1/0 X0/0	∲ <i>jk</i> nibbles for ABI type <i>jk</i>	X2/0 X1/0 X0/0	X2/* X1/* X0/*	X2/* X1/* X0/*
nibble	e CABI	CA1	CA0	MBI ⁺abc	=8 when <i>a=b=c=</i> 0	RABI	RA	RABIA

* indicates all possible values

indicates all possible values

30

Four CABI Types

		.					<u> </u>				
C	CABI Type 0 CABI Type 1			C	АВІ Туре	2	CABI Type 3				
CABI	CA1	CA0	CABI	CA1	CA0	CABI	CA1	CA0	CABI	CA1	CA0
0	0	0	0	0	0	0	0	0	0	0	0
1 1 1 1	1 1 1 *	1 1 1 0	1 1 1 1	1 1 1 *	1 1 1 0	1 1 1 1	1 1 1 *	1 1 1 0	1 1 1 1	1 1 1 *	1 1 1 0
0000	1000	0000	0001	1001	0001	0010	1010	0010	0011	1011	0011
X8	X8	X8	X8	X8	X8	X8	X8	X8	X8	X8	X8
X7	X7	X7	X7	X7	X7	X7	X7	X7	X7	X7	X7
X6	X6	X6	X6	X6	X6	X6	X6	X6	X6	X6	X6
X5	X5	X5	X5	X5	X5	X5	X5	X5	X5	X5	X5
X4	X4	X4	X4	X4	X4	X4	X4	X4	X4	X4	X4
X3	X3	X3	X3	X3	X3	X3	X3	X3	X3	X3	X3
X2	X2	X2	X2	X2	X2	X2	X2	X2	0	*	*
X1	X1	X1	X1	X1	X1	0	*	*	0	*	*
X0	X0	X0	0	*	*	0	*	*	0	*	*

• 3 contiguous subblocks per CABI (CA0 and CA1 unicast, CA1 multicast)

• 6.9E10 Type 0 CABIs

• 1 address per

subblock

3 addresses/CABI

- 4.3E9 Type 1 CABIs
 16 addresses per subblock
 48 addresses/CABI
- 2.7E8 Type 2 CABIs
- 256 addresses per subblock
- 768 addresses/CABI
- 1.6E7 Type 3 CABIs
- 4096 addresses per subblock
- 12288 addresses/CABI

0	AB type 0 AB size=2							
	01	02	03	MBI typ	05	06	07	08
0100								
nabc	1001	1010	1011	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1	1000
X7	X7	X7	X7	X7	X7	X7	X7	0
X6	X6	X6	X6	X6	X6	X6	0	0
X5	X5	X5	X5	X5	X5	0	0	0
X4	X4	X4	X4	X4	0	0	0	0
X3	X3	X3	X3	0	0	0	0	0
X2	X2	X2	0	0	0	0	0	0
X1	X1	0	0	0	0	0	0	0
X0	0	0	0	0	0	0	0	0
MBI size	16	256	4096	65k	1M	17M	268M	4.3E9
MBI count AB count	268M 4.3E9	17M 4.3E9	1M 4.3E9	65k 4.3E9	4096 4.3E9	256 4.3E9	16 4.3E9	1 4.3E9
addresses*	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9

*total for each case: unicast and multicast

1 1	1 8 1 0 0 0
	1000
X7 X7 X7 X7 X7 X7 0	
X6 X6 X6 X6 X6 0 0	
X5 X5 X5 X5 0 0 0	
	could specify another
X3 X3 X3 0 0 0 0 0	combination
X2 X2 0 0 0 0 0 0 0	
X1 0 0 0 0 0 0 0	
0 0 0 0 0 0 0	
MBI size 16 256 4096 65k 1M 17M 268M MBI count 17M 1M 65k 4096 256 16 1 AB count 268M 268M	

*total for each case: unicast and multicast

0	AB type 2 AB size=2		*applies to both unicast and multicast subblocks MBI type						
1 1 1 1 0 1 1 0	2 1	22	23	2 4	2 5	26	2728		
n a b c	1001	1010	1011	1 1 0 0	1 1 0 1	1 1 1 0			
X7	X7	X7	X7	X7	X7	0			
X6	X6	X6	X6	X6	0	0			
X5	X5	X5	X5	0	0	0			
X4	X4	X4	0	0	0	0	could specify more combinations		
X3	X3	0	0	0	0	0			
X2	0	0	0	0	0	0			
0	0	0	0	0	0	0			
0	0	0	0	0	0	0			
MBI size	16	256	4096	65k	1M	17M			
MBI count	1M	65k	4096	256	16	1			
AB count	17M	17M	17M	17M	17M	17M			
addresses*	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9			

*total for each case: unicast and multicast

Г

0	AB type 3 AB size=2			MBI ty	*applies to both unicast and multicast subblocks		
1 1 1 1 0 1 1 1	< 3 1	32	33	3 4	3 5	36	3738
n a b c	1001	1010	1011	1 1 0 0	1 1 0 1	1 1 1 0	1 1 1 1 1 0 0 0
X7	X7	X7	X7	X7	0		
X6	X6	X6	X6	0	0		
X5	X5	X5	0	0	0		
X4	X4	0	0	0	0		could specify more combinations
X3	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
0	0	0	0	0	0		
MBI size	16	256	4096	65k	1M		
MBI count	65k	4096	256	16	1		
AB count	1M	1M	1M	1M	1M		
addresses*	8.6E9	8.6E9	8.6E9	8.6E9	8.6E9		

null CABI: identifies no AB

- Could be used when initiating discovery to expected Registrar.
- Conveys to Registrar only the size of the requested AB.
- No other Claimant listens to this address.

Non-AB Temporary Unicast Address (TUA)

- For temporary use
- device without a source address selects a random non-AB temporary unicast address for initial discovery <u>only</u>
 - protocol then assigns at least one persistent unicast address
- simultaneous duplicate temporary addresses may lead to message loss in some circumstances
 - network learns route to source as initial message crosses the network
 - before response is returned, another initial message with duplicate source address crosses the path and rewrites the route
 - unlikely to be disastrous
 - loss of initial message will be corrected eventually
- · nevertheless, need to consider the likelihood of duplication
- Temporary address range includes 8 full nibbles of 16 values each (0-F)
 - $-16^9 = 68,719,476,736$ (= *N*) temporary addresses in the pool
 - chance of no duplicates with k randomly selected addresses is approximated exp(-k*(k-1)/(2*N))
 - with k=1000 devices <u>simultaneously</u> using a temporary address, chance of no duplicates is ~0.99988
 - address conflicts are rare, usually not harmful, and recoverable
 - can add first 2 bits of the N9 nibble and first 3 bits of the N8 nibble to the pool chance of no duplicates is then ~0.999996 (*k*=1000)

Appendix 2

additional procedural details

ARC Claimant: BARCPDU Processor – ingress

ARC Claimant: BARCPDU Processor – egress

ARC Claimant Application Process: Drop Claim

BARC Address Propagation with MMRP

The ARC Claimant Application Process includes "declare with MMRP". This entails declaring, to MMRP (when available), MMRP attributes, using an MMRPDU per IEEE Std 802.1Q § 10.12.1.6:

- The multicast address represented by the ABI
 - FirstValue field = ABI/NumberOfValues=1
- The two unicast address set subblocks indicated by the ABI (CABI or RABI)
 - FirstValue field = first ABI in unicast subblock/NumberOfValues = 16^{*jk*} per *jk* in nibble N9 of ABI
 - maximum NumberOfValues is with *jk*=3; 16³=4096; MRP provides 13 bits of NumberOfValues (2¹³=8192)

The ARC Claimant Application Process includes ("select CABI"); this selection should consider any local MMRP registration database to avoid selecting a registered CABI.

Unicast MMRP declaration can be useful because:

- (1) A one-step declaration covers a contiguous range of self-assigned unicast addresses.
- (2) Eliminates flooding for all the unicast addresses in the assignment.
- (3) Eliminates the need for learning of each unicast address when used.
- (4) Precludes erroneous re-learning of an address when a false duplicate is used elsewhere in the network.
 - Could be a way to control duplication.
 - Security issues to study.

BARC could alternatively specify "BARP," a new MRP application. This could entail the following changes:

(a) the BARP application would be enabled to Join and Leave with the ABI as the declared attribute
(b) the BARP application would be specified to understand the semantics of the ABI and extract from it the indicated ABI multicast address and the indicated unicast address set, then use it to populate the FDB
(c) In the BARC BI State Machine, the ABI claim ["sBARC(ABI:C)]" might not be needed, since the a BARP declaration could convey the claim to the ABI as well as the declaration of interest in receiving at the ABI multicast address

BARP might be better suited to specification within IEEE Std 802.1Q instead of 802.1CQ.

ARC Claimant Application Process: BARC Management

ARC Claimant Application Process: MAAP Management

BARC Registrar: BARCPDU Processor – ingress

BARC Registrar: BARCPDU Processor – egress

BARC Registrar Application: Disc Processing

BARC Registrar Application: MAAP_Disc Processing

BARC Registrar Application: MBI Claimant Management

MBI Claimant Application Process: BARC Management

