
 Block Address
Registration and Claiming

(BARC)

Roger Marks
EthAirNet Associates

2021-03-12
 1

Acknowledgements

thanks to Antonio de la Oliva
for review and constructive comments

thanks to other 802.1 WG and 1722 WG
participants for constructive discussions during
earlier comment resolution, particularly to Mick

Seaman, Norm Finn, Don Pannell, and Max Turner
 2

Introduction
• P802.1CQ/D0.5 was reviewed in Task Group Ballot.
• Comment resolution indicated that significant changes were required.
• This contribution summarizes an approach to the next draft.
• Approach is based on address blocks, as raised during comment

resolution.
• Each Address Block (AB) is identified by an Address Block Identifier (ABI).
• Some ABIs (CABIs) are designated for self-claiming.
• Other ABIs (RABIs) are designated for management by a Registrar.
• Address Registration and Claiming (ARC) protocol is outlined here, with:

⁃ Block Address Registration and Claiming (BARC)
⁃ Address-Range (AR) claiming, incorporating MAAP from IEEE 1722,

per comment resolution.
⁃ not using any BARC addresses

 3

BARC assigns MAC Addresses in Address Blocks

1) Address Blocks (ABs) include local addresses.

2) An AB includes both unicast and multicast address subblocks.

3) No address falls within more than one AB.

4) An AB Identifier (ABI) identifies each AB.

5) Registrars hold multi-blocks sets of ABs, identified by multi-block identifiers (MBIs).

6) An ABI within an MBI is a registrable ABI (RABI).
⁃ identifies Registrable Address Blocks (RABs) holding Registrable Addresses

(RAs)

7) An ABI not in an MBI is a Claimable ABI, claimable by a Claimant without a Registrar.
⁃ identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)

8) Each ABI and MBI is a multicast address and not in any AB.

9) A large set of Temporary Unicast Addresses (TUAs) is specified
⁃ for initial discovery by Claimant lacking a unicast address.

 4

MAC Address Categorization

 5

indicates, by inspection

CABI, CABI type, CAB (including
all other CAs in CAB)

RABI type, MBI, MBI type, RAB
(including all other RAs in RAB)

CABI type, CAB

note: ~6.8E10 to choose among

RABI

TUA temporary unicast address

RABIA (unicast) RABI address
(one of many)

MBI type, RABI type, RABIsMBI multi-block identifier

RABI RAB identifier

RABI, RABI type, MBI, MBI type,
all other RAs in RABRA

registrable address, in
registrable address block
(RAB)

CAB identifierCABI

claimable address, in
claimable address block
(CAB)

CA

not specified
by BARC

Expanded namedeterminable
via inspection:

U

U

M

M

U,M

M

U,M

I/G

BI

MBI

BI

BA

BI

BA

Role

BA= block address ; BI = block identifier

BARC MAC Address Structure

 6

N1
N0

N2

N11

N5

N8

N5
N6

N9
N10

N6
N7

p r j k

n a b c

1 1 1 M

0 always 0 (remaining 15 values for non-BARC use)

M is the usual multicast (I/G) bit; 111 is local “SAI” range per IEEE Std 802c

address block includes subblocks of 16jk contiguous addresses

multi-block includes 16abc address blocks (N8 unstructured in CABI)

12 nibbles
per 48-bit
address

• M, p, r, and n bits distinguish
Block Addresses (BAs) and Block Identifiers (BIs)
⁃ e.g. CABI has M=1, p=0, r=0

• see Appendix for details

Claiming (simplified)
CABI4

LAN

CABI5

tentative
CABI1

CABI3

CABI2

CABI1

(1) CABI1: DISCOVER state

(2) (unicast) CABI1: CLAIMED state

 7

CABI4

LAN

CABI5

tentative
CABI6

CABI3

CABI2

CABI1

CABI4

LAN

CABI5

CABI6

CABI3

CABI2

CABI1
(4) CABI6: CLAIMED state
start listening to CABI6

Claimant of CABIX AB
listens to CABIX
multicast address

(1) CABI1: DISCOVER state

(1) CABI6: DISCOVER state

Registrar
• Registrar maintains an inventory of RABIs (within MBIs).

– a protocol specifies how Registrars acquire MBIs.
– set of RABIs is disjoint from the set of CABIs

– AB is either claimable (CABI) or registrable (RABI); not both

• Registrar listens for all messages to a CABI.
– M=1, p=0, r=0, i.e. DA begins 0000-1111-00

• [MMRP NumberOfValues field is 13 bits]
• Registrar can respond to a DISCOVER with an OFFER of an AB in
its inventory.

– The OFFER defends the DISCOVER message’s CABI.
– Client claims an offered RABI, similar to claiming CABI.

– Registrar does not assign RABI but tracks its registration.
– OFFER cites one of the RABI’s RABIA, not the RABI directly.

• claim is then sent to Register at the unicast RABIA
• has some advantages

• Claimant need not be aware of Registrar when initiating a claim. 8

Operation with Registrars
RABI4

LAN

Registrar
RABI5

tentative
CABI1

RABI3

RABI2

Registrar
RABI1

(1) CABI1: DISCOVER state

(2) (unicast) RABIA1: OFFERED state

(1) CABI1: DISCOVER state
(2) (unicast) OFFER RABIA5

RABI4

LAN

Registrar

RABIA1

RABI3

Registrar

DISCOVER
to CABI

RABI2

 9

(3) (unicast) RABIA1: REGISTERED state

if Registrar expected at specific address

ABI4

ABI5

RABIA1

ABI3

(3) (unicast) RABIA1: REGISTERED state

ABI2

 10

Registrar
DA

ABI4

ABI5

ABI3

ABI2Registrar
DA

tentative
ABI0

(1) ABI0: DISCOVER state [to DA]

(2) (unicast) RABIA1: OFFERED state

e.g. for WLAN

DA coud be “Nearest Customer Bridge” address
01-80-C2-00-00-00 (non-forwarding)

Following a claim to a CABI, lack of response is a success.

Following a claim to a specific destination, a lack of response is
a failure; need to follow with a claim to a CABI.

BARC Design
• A BARC architecture follows, with details including state machines.

⁃ additional details in Appendix

• Listened carefully to comments and discussion raised in P802.1CQ/D0.5 TG Ballot

• BARC (Block Address Registration and Claiming) is put into the broader context of
Address Registration and Claiming (ARC), which supports both:
⁃ address blocks (ABs), identified by Address Block Identifiers (ABIs)
⁃ address ranges (ARs), excluding addresses specified by BARC

• ARC is the general protocol
⁃ BARC handles BI Registration and Claiming
⁃ existing MAAP handles AR Claiming

 11

ARC
Claimant

ARC Architecture – ARC Claimant

BI Claimant
BI n

BI C

BI B

BI A
state machine

ARC Claimant
Application

LLC

TryC(sa)[BI]
TryR(da,sa)[BI]
Accept(sa,token)[BI]
Delete()[BI]
Renew()[BI]

Outcome(result)[BI]
FYI(status)[BI]

Add(AR)
Drop(AR)

Outcome(result,AR)

AR Claimant

 12

MAD

MMRP

ingress MAC address filter

Ingress(address,status)

AVTPDU(AR)

BARC![BI]

sBARC

BARCPDU(I1,S1,I2,S2[,token])

AR
state machine

MAAP
state machine

rMAAP(state,AR)!
sMAAP(event!)

BARCPDU Processor

ingress MAC address filter accepts
• unicast addresses as adopted for use
• BI of an active CABI State Machine
• MAAP multicast address for AVTPDUs

BARCPDU Summary

 13

I1

E

t

S1

Ethertype

subtype [tbd, per 1722 WG; see IEEE 1722 Table 6]

[tbd; could be 22F0 (MAAP Ethertype)]

State D, C, V, R, T, MD, MC, N(null)

identifier (an address)

DA dest addresss DA

SA source address (TUA allowed if S=D or A)

I2

S2 State O, S, N(null)

identifier

T token

field name purpose content

AVTPDU Summary

E

t

Ethertype

subtype FE per IEEE 1722 Table 6

22F0 (MAAP Ethertype)

DA dest addresss 91:E0:F0:00:FF:00 for MAAP multicast

field name purpose content

Event

ABI Claimant – BI State Transition Table

BARC(C)! Outcome(V)
VACANT

DiscoverC_Timer!

sBARC(BI:D,sa:S){BI,sa}
Start DiscoverC_Timer
DISCOVERY

DISCOVERY (D)

TryC(sa)!

VACANT (V)

Ingress(BI,pass)
Outcome(C)
sBARC(BI:C,0:N){BI,sa}
Start Renew_Timer(C)
CLAIMED

sBARC(BI:C,0:N){BI}
FYI(Alert)

CLAIMED (C)

BARC(D,SA)! Outcome(V)
VACANT

da=SA
sBARC(BI:C,0:N){da}

State (BI/CABI)

 14

Accept(sa,token)!

BARC(V,sa,token)!

Delete()! VACANT
sBARC(BI:V,0:N){BI}
Ingress(BI,filter)
VACANT

DiscoverT_Timer! Outcome(T)
VACANT

sBARC(BI:T,sa:S){da,sa}
Start DiscoverT_Timer
DISCOVERY

TryT(da,sa)!

State (BI/RABIA)

OFFERED (O)

Ingress(sa,pass)
R_sa==sa
R_token==token
sBARC(BI:R,sa:S,token){BI,sa}
Start Renew_Timer(R)
REGISTERED

REGISTERED (R)

if sa= R_sa and token= R_token then
Ingress(sa,filter)
FYI(Revoked)
VACANT

sBARC(BI:V, R_sa,R_token){BI,R_sa}
Ingress(BI,R_sa)
VACANT

BARC(O)!
FYI(Offer)
StartOffer_Timer
OFFERED

Offer_Timer! VACANT

Renew_Timer!
or
Renew()!

FYI(Renewed)
sBARC(BI:C,0:N){BI,sa}
Start Renew_Timer(C)

FYI(Renewed)
sBARC(BI:R,sa:S,token){BI,sa}
Start Renew_Timer(R)

BARC(R,sa,token)! if sa= R_sa and token= R_token then
Start Renew_Timer(R)

BI Claimant Procedure

 15

BI Claimant Existing BI Claimant

DC

CABI:D
CABI
uni

uni
sa

CABI:C

CABI:V
CABI:C

CABI:D

holding claim CABI;
listening to CABI

claiming
a CABI

CABI
State
is C

(Claimed)

CABI State
goes to D
(Discover)

DA

SA; could be TUADC timer
starts

receives
PDU

sends
PDU

BI:stateuni:S

PDU

CABI State
goes from C to

V (Vacant)
(state machine

destroyed)

decision to claim CABI

0:N

CABI1:D
CABI1

uni

CABI1:C
CABI1

sa

CABI1:D

CABI1:C
start listening to

CABI1

not listening
to CABI1, so

PDU not
received

CABI1 State
goes to D

CABI1 State
goes

from D to C
(Claimed)

uni:S

adopt CABI1 AB

SA; could be
ICA

decision to claim CABI1

DC

0:N

SA; could be TUA

BI Claimant/Registrar Procedure: Multicast

 16

BI Claimant RABI Registrar

DC

CABI:D
CABI
uni

uni
RABIA

RABIA:O

CABI:V RABIA:O

CABI:D

begins
without

knowledge
of Registrar

CABI:C

start listening to RABIA

select RABI with traits (such as AB size)
of received CABI; select (e.g. randomly)

a RABIA identifying that RABI

Even after CABI state
machine destroyed, further

offers can arrive; they create
new RABIA state machines.

RABIA:O

uni:S

decision to claim CABI

CABI State goes
from C to V (Vacant)

(state machine
destroyed)

new RABIA
state machine

in state O
(Offered)

DA
uni

uni
RABIA

RABIA:O

RABIA:O
RABIA:O

ABI:T

Model BI is a not
intended for claiming,
only to indicate traits,
such as AB size.

State
indicated

as T
(targeted) DT

DA is a unicast address of an
expected Registrar. This could be
a configured or previously learned
address. It could also be a non-
forwarding Nearest Customer
Bridge address, if a Registrar is
anticipates an immediately
connected bridge of unknown
address.

uni:S

Unlike a response to a “D” state, no “C”
identifier is included in responding to a
“T” state, since the claim is temporary
and the identifier will not be claimed.

BI:D

BI:V

BI Claimant/Registrar Procedure: Targeted
decision to try to register BI

based on model BI

After DT timer expires, check for
Offer; if none, proceed to multicast
ABI Claimant/Registrar Procedure

0:N

BI Claimant RABI Registrar

receives
PDU to any

CABI
The RABIA serves as a BI (block identifier)
and is controlled via a BI state machine in the
Claimant and a RABIA state machine in the
Registrar.

new RABIA State goes to O

Random RABIA selection can help control
erroneous management of registered claims.
Alternatively, the RABIA could be set to a
predictable value (e.g., the lowest address).

new RABIA
state machine

in state O
(Offered)

Claimant-initiated
withdrawal

Registration, Renewal, and Withdrawal of an Offer

 17

BI Claimant RABI Registrar

RABIA
IRA

RABIA:R
RABIA:R

T

IRA

RABIA:R
sa

RABIA:R

RABIA:V RABIA
sa

RABIA:VRABIA:V

RABIA:V

IRA
RABIA

RABIA:V

RABIA:V

or

repeated claim
(e.g. to renew)

IRA &
token

stored in
RABIA
State

RABIA

adopt AB per
RABI of RABIA

Registrar-initiated
revocation

Note 1: A PDU to the RABI Registrar
using a different RABIA would not be
processed. The original ABU
Claimant knows the RABIA in use;
other claimants attempting to
interfere (intentionally or accidentally)
with the RABI will be inhibited if they
lack of knowledge.

Note 2: Even if the DA holds the
correct RABIA, the PDU will be
rejected if the enclosed token and
IRA (and perhaps SA) do not match
those in the RABIA State Machine.
This again interferes with counterfeit
PDUs.

Note 3: IRA, token, and RABIA are
included only in unicast messages,
limiting their distribution in the
network.

Note: PDU rejected unless RABIA, IRA, and token match the
RABIA State Machine. PDU not delivered if IRA is incorrect.

RABIA R
State

lifetime
timer
reset

IRA:S

RABIA:R

RABIA State
goes from O to R

start listening to IRA
unicast address

IRA selected from RABI
IRA and token T stored in

RABIA State

T

IRA

IRA T

IRA T

T

IRA:S T

IRA:S T

IRA:S T

decision to register claim to RABIA

RABIA:ORABIA:O

RABIA State
goes from O to R

decision to renew claim to RABIA

decision to withdraw claim to RABIA
RABIA:R

RABIA State
goes from R to V

RABIA State
goes from R to V

decision to revoke claim to RABIA

IRA
RABIA

IRA
RABIA

RABIA:V
IRA:S T

RABIA:V
IRA:S T

RABIA:R
IRA:S T

RABIA:V
IRA:S T

RABIA:R
IRA:S T

This message is sent
to reset Claimant’s
Renew timer, and to
keep RABIA alive in
bridge forwarding
tables.

RABIA R State
Renew timer

reset

 18

BARC Registrar: AVTPDU Processor

ENDmaap_version

AVTPDU
(maap_version,
message_type,

AR)
at MAAP DA

from SA

MAAP_Disc(AR,SA)

not 2

message_type
2 1

not 1

AR Claimant Procedure

 19

AR Claimant RABI Registrar

AR:D

uni
RABIA

RABIA:O

RABIA:O

AR State
goes to D

(Discovery)

RABIA
State

goes to O

0:N start listening to RABIA

select RABI with traits (such as size) of AR;
select a RABIA identifying that RABI

RABIA:O

new RABIA
state machine

in state O
(Offered)

AR:V
oblivious to
Registrar

AR State remains as D

AR State V
(Vacant)

MAAP DA

Existing AR Claimant
either MAAP or BARC

AR Claimant

AVTPDU
Defend

AR:D

AR:D

AR Claimant works exactly like MAAP in a
group of mixed AR and MAAP Claimants.

MAAP AVTPDUs are received by BARC
Registrar. If the AVTPDU is a MAAP
Probe/v2, then the Registrar responds
just as it does to a Targeted Claim. uni

AVTPDU
Probe/v2

AR

AR:V

AR State V
(Vacant)

AR State
goes to D

(Discovery)

MAAP DA
uni

AVTPDU
Probe/v2

AR

AVTPDU Probe/v2 is
identical to AVTPDU
Probe/v1 except for
MAAP version number.

AR Claimant and (legacy) MAAP
Claimant respond identically to
AVTPDU Probe/v2.

AR:V
AR State
goes to V
(Vacant)

Device can optionally register the
Offer via BARC, while the AR may
independently be claimed if not
defended by a MAAP Claimant.

Event

AR State Transition Table

VACANT (V) DISCOVERY (D)

State

 20

Add(AR)! sMAAP(Begin(AR)!)
DISCOVERY

rMAAP(AR:Defend)! Outcome(A,AR)
ACQUIRED

ACQUIRED (A)

rMAAP(AR:Initial)! Outcome(F,AR)
VACANT

Outcome(X)[AR]
VACANT

rMAAP(AR:State!) invokes an event at the state machine when the MAAP state changes to State

sMAAP(Action!) invokes Action! event at MAAP state machine

ARC Claimant Application Process: Add Claim

START:
Initiate
Adding

seeking
AB or AR?

AB

AR

 21

attempt
Targeted
Claim?

no

yes

select Registrar da
select BI

TryT(da,sa)![BI]

await
Outcome(T)[BI]

Acceptable
OFFERED

RABIA?

yes

no

select sa
select CABI

TryC(sa)![CABI]

Cresult of
Outcome(result)

[CABI]

V
END

try again?

no

yes Acceptable
OFFERED

RABIA?

no

select IRA from RABI as sa
adopt sa as address

generate token
Accept(sa,token)[RABIA]

configure ingress filter,
and declare with MMRP,

per adopted addresses to
be used

END

Acceptable
OFFERED

RABIA?
no

yes

yes

AR Claimant
Add(AR)Select (AR)

considering
Offers,

try again?

yes

no

if using TUA,
select and

adopt a
unicast

address from
CABI as
address

Drop
any AB or

AR?

result of
Outcome

(result,AR)

START:
Initiate

Dropping

no

yes

F

A

ingress MAC address filter accepts BARCPDUs
addressed to:

• RABIA of an active RABIA State Machine
• MBI of an active MBI State Machine
• any CABI

and MAAP multicast address for AVTPDUs

MBI m

BARC
Registrar

BARC Architecture – Registrar

RABI Registrar

RABIA n
RABIA C

RABIA B

RABIA A
state

machine

BARC Registrar
Application

Invite(BI)
MAAP_Disc(AR,SA)

 22

MBI Claimant

MBI C

MBI B

MBI A
state

machine

Try(sa)[MBI]
Delete()[MBI]

LLC
ingress MAC address filter

Ingress(address,status)

Outcome(result)[MBI]
FYI(status)[MBI]

AVTPDU(AR)

BARC![BI]

sBARC

BARCPDU(I1,S1,I2,S2[,token])

BARCPDU Processor

BARC![BI]

sBARC

Disc(State,BI,SA)

AVTPDU Processor

Ingress(address,status)

Event

RABI Registrar: RABIA State Transition Table

VACANT (V)

BARC(R,sa,token)!

REGISTERED (R)

if sa= R_sa and token= R_token then
Start Register_Timer(R)

OFFERED (I)

R_sa==sa
R_token==token
Start Register_Timer(R)
sBARC(RABIA:R, R_sa:S,
 token){R_sa,RABIA}
REGISTERED

State (RABIA)

 23

BARC(V,sa,da)!

if sa= R_sa and token= R_token then
Ingress(sa,filter)
Start Expire_Timer
EXPIRED

InviteD(CABI,RABIA,da)!

Ingress(RABIA,pass)
sBARC(CABI:C,RABIA:O){da,RABIA}
Start Offer_Timer
OFFERED

InviteT(S1,RABIA,da)!

Ingress(RABIA,pass)
sBARC(0:S1,RABIA:O){da,RABIA}
Start Offer_Timer
OFFERED

Offer_Timer!
Ingress(RABIA,filter)
Start Expire_Timer
EXPIRED

Register_Timer!

sBARC(RABIA:V, R_sa:S,token){R_sa,RABIA}
Ingress(RABIA,filter)
Start Expire_Timer
EXPIRED

EXPIRED (E)

Ingress(RABIA,pass)
sBARC(CABI:C,RABIA:O){da,RABIA}
Start Offer_Timer
OFFERED

Ingress(RABIA,pass)
sBARC(0:S1,RABIA:O){da,RABIA}
Start Offer_Timer
OFFERED

Expire_Timer!

sBARC(RABIA:V, R_sa:S,token){R_sa,RABIA}
Ingress(RABIA,filter)
Start Expire_Timer
EXPIRED

VACANT

MBI Claimant Procedure

 24

MBI Claimant Existing MBI Claimant

DT

MBI:MD
MBI
uni

uni
MBI

MBI:MV

DT

MBI1:MD
uni

MBI1:MC
MBI1
uni

MBI:MC

MBI:MD

MBI1:MD

MBI1:MC

holding claim MBI;
listening to MBI

claiming
an MBI

MBI
State
is MC

(Claimed)

MBI State
goes to MD
(Discover) DA

SA
DT timer

starts

sends
PDU

MBI:state
MBI State

goes to MV
(Vacant)

before timer
expires

start listening to MBI1

DT timer
expires

not listening
to MBI1, so

PDU not
received

MBI1
(new MBI)

 State goes
to MD

MBI1
State

goes to MC
(Claimed)

uni:S

adopt MBI1 MBI

An MBI Registrant could be specified. Alternatively, a
Primary MBI Claimant could be configured to hold and
defend many MBIs in reserve, ensuring that MBIs are
not excessively granted. This would suffice in many
cases.

If an MBI Registrant is to be specified, following the
design of the ABI Registrant, an MBIA identifier, parallel
to the RABIA, could be specified by taking a bit from
the abc bits; for example, turning the c bit into a
designation of the MBIA and limiting the RABI to four
types, using the ab bits. However, an MBI Registrant
does not require an MBIA identifier.

decision to claim MBI
MBI:MC

decision to claim MBI1
MBI

uni:S

0:N

0:N

Event

MBI Claimant: MBI State Transition Table

BARC(MC)! Outcome(MV)
VACANT

MDiscoverTimer!

DISCOVERY (MD)VACANT (MV)

ingress(MBI,pass)
Outcome(MC)
sBARC(MBI:MC,0:N){MBI}
Start Renew_Timer
CLAIMED

Delete()! VACANT

sBARC(MBI:MC,0:N){MBI}
FYI(Alert)

CLAIMED (MC)

sBARC(MBI:MC,0:N){MBI}
ingress(MBI,filter)
VACANT

BARC(MD,SA)! Outcome(MV)
VACANT

da=SA
sBARC(MBI:MC,0:N){da}

State (MBI)

 25

sBARC(MBI:MD,sa:S){MBI,sa}
Start MDiscoverTimer
DISCOVERY

Try(sa)!

Renew_Timer!
or
Renew()!

sBARC(MBI:MC,0:N){MBI}
FYI(Renewed)
Start Renew_Timer

VLANs
• All state machines are specified per VLAN.

• All address assignments are specific to the VLAN in which the state
machine operates.

• All addresses adopted are specific to the VLAN under which the
assignment was completed.

• Usage of any address is limited to the VLAN under which it was obtained.

• Any address assigned within the context of a VLAN shall not be reassigned
except within the context of the VLAN in which it was assigned.

• Due to the possibility that the same unicast address may be assigned in
different VLANs, Independent VLAN Learning (IVL) is required in bridges,
per IEEE Std 802.1Q Annex F (F.1.2).
⁃ This requirement could be relaxed when assigned unicast addresses are

declared via MMRP.

 26

Summary
• Claimants operate with or without Registrars.

• Multiple registrars are supported, operating with disjoint multi-blocks.

• The block discretization provides:
– a vast set of addresses to a LAN

– though operating entirely within 1/16 of the SAI quadrant of local address space
– a large set of temporary unicast addresses
– operational efficiency and simplicity
– both unicast and multicast addresses (1/2 or 2/3 unicast) to Claimant

– including one unicast and multicast subblock with the same range, except for the M bit
– could be exploited

– devices needing both unicast and multicast addresses need make only one claim

• Could integrate with MMRP to limit propagation and eliminate learning of unicast AB
content.

– MMRP needs to efficiently handle address ranges
– BARP could be specified as alternative MRP application

 27

Appendix 1
• additional details on BARC addresses and identifiers

 28

GCA

MAC Address Parsing

N11 N10
msb

0

not specified by BARC

non-
zero not 111

p
111

1

M
0

r
1 0

TUA
(temporary unicast address)

0

MAC
address

r
1

0

1

ABI is
RABI of type jk
Registrable ABI

(within an MBI of type jk/abc)
with 2•16jk IRAs & 2•16jk GRAs

0

BARC address is unicast or multicast
RA within RAB
identified by type jk RABI
within an MBI of type abc
(n=0 or 1)

1

 29

N1
N0

N2

N11

N5

N8

N5
N6

N9
N10

N6
N7

p r j k

n a b c

1 1 1 M

0

M GCA1

ICA

r n

1

0
(unicast) RABIA BI

identifier is
MBI of type jk/abc

with 16abc type jk RABIs

M
1

GRA
0

IRA

ABI is
CABI of type jk
Claimable ABI

 (not within an MBI)
with 2*16jk ICAs & 16jk GCAs

jk+
abc
lsn*

0

jk
lsn*

0
n

*lsn= least significant nibbles

10

CA indicates CABI

RA indicates RABI

BARC address is unicast or multicast
CA within CAB

identified by type jk CABI
(not within an MBI)

 RABI
indicates

MBI

 RABIA indicates RABI

1

0

not specified by BARC
other

other

ICA0
ICA1

BARC address
within an AB unicast BARC

address
within a CAB

MBI, RABI, RA, RABIA

X1/0
X0/0

X2/0

MBI
identifies

its
RABIs

X1/0
X0/0

X2/0

MBI

 30

1 1 1 1 1 1 1 1

0 0

X5
X4/0

X6

X3/0

X5
X6

a b c a b c

X4/#
X3/#

X1/0
X0/0

X2/0

CABI

1 1 1 1

0

X5
X6

X3
X4

X7 X7X7
X8

X1/*
X0/*

X2/*

1 1 1 *

0

X5
X6

a b c

X4/#
X3/#

RA

X7

jk nibbles for
ABI type jk

abc nibbles for
MBI type jk/abc+

+abc=8 when a=b=c=0

indicates all possible values

RABI

X1/*
X0/*

X2/*

CA1

1 1 1 *

0

X5
X4

X6

X3

X7
X8

X1/*
X0/*

X2/*

1 1 1 0

0

X5
X6

1 0 * 0 a b c

X4/#
X3/#

RABIA

X7

X1/*
X0/*

X2/*

CA0

1 1 1 0

0

0 00 11 00 1 10 10 10

X5
X4

X6

X3

X7
X8

j k j kj k j kj k j kkj

N5
N6

N3
N4

N7
N8

N2

N0
N1

N9
N10
N11

nibble

CABI and CA

* indicates all possible values

Four CABI Types

X3

X5

X1

X6

X0

X4

X2

0
0
0

0
0

0

• 6.9E10 Type 0 CABIs
• 1 address per
subblock
• 3 addresses/CABI

X3

X5

X1

X6

X4

X2
X3

X5
X6

X4
X3

X5
X6

X4

X2

 31

0 0 0 0

X8 X8 X8 X8
X7 X7 X7 X7

CABI Type 0 CABI Type 1 CABI Type 2 CABI Type 3

X3

X5

X1

X6

X0

X4

X2

0

X8
X7

*

X3

X5

X1

X6

X4

X2

0

X8
X7

*
*

X3

X5
X6

X4

X2

0

X8
X7

*
*

*
X3

X5
X6

X4

0

X8
X7

1 11 1 1 *1 1 1 11 1 1 *1 1 1 11 1 1 *1 1 1 11 1 1 *1 1

CABI CA1 CABI CA1 CABI CA1 CABI CA1

X3

X5

X1

X6

X0

X4

X2

0

X8
X7

1 01 1

CA0

*

X3

X5

X1

X6

X4

X2

0

X8
X7

1 01

CA0

1

*
*

X3

X5
X6

X4

X2

0

X8
X7

1 01 1

CA0

*
*

*
X3

X5
X6

X4

0

0 0 0 01 1 1 10 0 0 00 0 0 1 1 0 1 100 0 1 1 0 1 100 10 1 0 1 1
X8
X7

1 01 1

CA0

• 3 contiguous subblocks per CABI (CA0 and CA1 unicast, CA1 multicast)

• 4.3E9 Type 1 CABIs
• 16 addresses per
subblock
• 48 addresses/CABI

• 2.7E8 Type 2 CABIs
• 256 addresses per
subblock
• 768 addresses/CABI

• 1.6E7 Type 3 CABIs
• 4096 addresses per
subblock
• 12288 addresses/CABI

0 0 0 0 0 0 0 0 0 0 0 0

Multi-Blocks and Multi-Block Identifiers (MBIs)

X1
X0

X2

AB type 0
AB size=2•1

 32

1 1 1 1
0

0 1 0 0

X5
X4

X6

X3

0 0
0

0
0
0

0 0
0

0
0
0

0
0
0

0
0
0

0
0
0

MBI count 4096 256268M 65k
MBI size 65k 1M 17M409616 256

1M

addresses*
4.3E9 4.3E9 4.3E9 4.3E9 4.3E9 4.3E9

*total for each case: unicast and multicast
8.6E9 8.6E9 8.6E9 8.6E9 8.6E9 8.6E9

AB count

X7

0
0
0

0
0
0

268M
16

4.3E9
8.6E9

0

0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1a b c 1 1 1 1 1 1 1n 1 0 0 0

0
0
0

0
0
0

4.3E9
1

4.3E9
8.6E9

0
0

17M

X1
X2

X5
X4

X6

X3

X7

X2

X5
X4

X6

X3

X7 X7 X7 X7 X7 X7
X6 X6 X6 X6
X5 X5 X5
X4 X4
X3

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8

MBI type

Multi-Blocks and Multi-Block Identifiers (MBIs)

X1
0

X2

 33

1 1 1 1
0

0 1

X5
X4

X6

X3

0
0

0
0
0

0 0
0

0
0
0

0
0
0

0
0
0

0
0
0

MBI count 4096 25665k
MBI size 65k 1M 17M409616 256

1M

addresses*
268M 268M 268M 268M 268M 268MAB count

X7

0
0
0

0
0
0

268M
16

268M

0

0
0
0

0
0
0

1

0
0

17M

could specify
another
combination

X2

X5
X4

X6

X3

X7

X5
X4

X6

X3

X7 X7 X7 X7 X7
X6 X6 X6
X5 X5
X4

AB type 1
AB size=2•16

1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8

MBI type

*total for each case: unicast and multicast

0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1a b c 1 1 1 1 1 1 1n 1 0 0 0
0 1

8.6E9 8.6E9 8.6E9 8.6E9 8.6E9 8.6E9 8.6E9

Multi-Blocks and Multi-Block Identifiers (MBIs)

0
0

X2

 34

1 1 1 1
0

1 0

X5
X4

X6

X3

0
0
0

0 0
0

0
0
0

0
0
0

0
0
0

0
0
0

MBI count 4096 25665k
MBI size 65k 1M 17M409616 256

1M

addresses*
17M 17M 17M 17M 17M 17MAB count

X7

0
0
0

0
0
0

16

0

0
0
0

0
0
0

1

0
0

could specify more
combinations

X5
X4

X6

X3

X7 X7 X7 X7 X7
X6 X6 X6
X5 X5
X4

AB type 2
AB size=2•256 *applies to both unicast and multicast subblocks

2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8

MBI type

*total for each case: unicast and multicast

0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1a b c 1 1 1 1 1 1 1n 1 0 0 0
0 1

8.6E9 8.6E9 8.6E9 8.6E9 8.6E9 8.6E9

Multi-Blocks and Multi-Block Identifiers (MBIs)

0
0

0

 35

1 1 1 1
0

1 1

X5
X4

X6

X3 0 0
0

0
0
0

0
0
0

0
0
0

0
0
0

MBI count 4096 25665k
MBI size 65k 1M409616 256

addresses*
1M 1M 1M 1M 1MAB count

X7

0
0
0

0
0
0

16

0

0
0
0

0
0
0

1

0
0

could specify more
combinations

X7 X7 X7 X7
X6 X6 X6
X5 X5
X4

AB type 3
AB size=2•4096 *applies to both unicast and multicast subblocks

3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8

MBI type

0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1a b c 1 1 1 1 1 1 1n 1 0 0 0
0 1

8.6E9 8.6E9 8.6E9 8.6E9 8.6E9

* indicates all possible values

RABI Example

0
0

0
0
0

0

example
MBI

 36

1 1 1 1 1 1 1 1
0 0

0 0

2
0

0

0

2
0

#
#

3 nibbles
per ABI type jk=3

2 nibbles
for MBI type abc=2

256
RABIs

8 8

A
B

F

1 1 1 1
0

1

2
0

0
1

8

A
B

F

1 1 1 0
0

1

2
0

0
1

2•4096
IRAs in

32/0x80201

8

indicates all possible values

0
0

0

1 1 1 1
0

0

2
0

0
1

particular
RABI

8

2•4096
GRAs in

32/0x80201
RABI short name: 32/0x80201 (32=MBI Type)MBI short name: 32/0x802 (32=MBI Type)

MBID
short
name

RABI
short
name

A
B

F

1 1 1 0
0

1 1 111 11 1 1 1 1 11 11 1 j k

2
0

0
1

8
1 0 *0 * 00 1 0 0 1 0 0 1 00 1 00 1 0 0 1 0

4096
RABIAs in

32/0x80201

MBI Example RA, RABIA Example

0

null CABI: identifies no AB

• Could be used when initiating discovery to expected Registrar.

• Conveys to Registrar only the size of the requested AB.

• No other Claimant listens to this address.

 37

0

0

0

0

0

0

0

1 1 1 1
0

0

0
0

0 kj

Non-AB Temporary Unicast Address (TUA)
• For temporary use

• device without a source address selects a random non-AB temporary unicast address for initial
discovery only

– protocol then assigns at least one persistent unicast address

• simultaneous duplicate temporary addresses may lead to message loss in some circumstances
– network learns route to source as initial message crosses the network
– before response is returned, another initial message with duplicate source address

crosses the path and rewrites the route
– unlikely to be disastrous
– loss of initial message will be corrected eventually

 • nevertheless, need to consider the likelihood of duplication

• Temporary address range includes 8 full nibbles of 16 values each (0–F)
– 169 = 68,719,476,736 (= N) temporary addresses in the pool
– chance of no duplicates with k randomly selected addresses is approximated

 exp(–k*(k–1)/(2*N))
– with k=1000 devices simultaneously using a temporary address, chance of

no duplicates is ~0.99988
– address conflicts are rare, usually not harmful, and recoverable
– can add first 2 bits of the N9 nibble and first 3 bits of the N8 nibble to the pool

chance of no duplicates is then ~0.999996 (k=1000)

 38

*
*

*
*

*
*

*

1 1 1 0
0

0 0 0

*

1

0 000

Appendix 2
• additional procedural details

 39

 40

ARC Claimant: BARCPDU Processor – ingress

ENDS2

BARCPDU
(I1,S1,
I2,S2

[,token])

ARC Claimant: BARCPDU Processor – egress

sBARC
(i1:s1,
i2:s2

[,token])
{da[,sa]}

send BARCPDU
with I1=i1,S1=s1,

I2=i2,S2=s2
[,T=token]

to da from sa

if sa is null, use default

END

O

BARC(O)! to I2

S

if I1 is active and S1≠N then
 BARC(S1)! to I1

if I1 is active and S1≠N then
BARC(S1)! to I1

if I1 is active and S1≠N then
BARC(S1,I2,token)! to I1

N

could repeat, with
repetition count

possibly based on
S1 and S2

ARC Claimant Application Process: Drop Claim

START:
Initiate

Dropping

BI Claimant
Delete()[BI]

AB
or
AR

AR Claimant
Drop[AR]

AB

AR

END

 41

 42

BARC Address Propagation with MMRP
The ARC Claimant Application Process includes “declare with MMRP”. This entails declaring, to MMRP (when available),
MMRP attributes, using an MMRPDU per IEEE Std 802.1Q § 10.12.1.6:
• The multicast address represented by the ABI

FirstValue field = ABI/NumberOfValues=1
• The two unicast address set subblocks indicated by the ABI (CABI or RABI)

FirstValue field = first ABI in unicast subblock/NumberOfValues = 16jk per jk in nibble N9 of ABI
• maximum NumberOfValues is with jk=3; 163=4096; MRP provides 13 bits of NumberOfValues (213=8192)

The ARC Claimant Application Process includes (“select CABI”); this selection should consider any local MMRP
registration database to avoid selecting a registered CABI.

Unicast MMRP declaration can be useful because:
(1) A one-step declaration covers a contiguous range of self-assigned unicast addresses.
(2) Eliminates flooding for all the unicast addresses in the assignment.
(3) Eliminates the need for learning of each unicast address when used.
(4) Precludes erroneous re-learning of an address when a false duplicate is used elsewhere in the network.

• Could be a way to control duplication.
• Security issues to study.

BARC could alternatively specify “BARP,” a new MRP application. This could entail the following changes:

(a) the BARP application would be enabled to Join and Leave with the ABI as the declared attribute
(b) the BARP application would be specified to understand the semantics of the ABI and extract from it the
indicated ABI multicast address and the indicated unicast address set, then use it to populate the FDB
(c) In the BARC BI State Machine, the ABI claim [“sBARC(ABI:C)]” might not be needed, since the
a BARP declaration could convey the claim to the ABI as well as the declaration of interest in receiving at
the ABI multicast address

BARP might be better suited to specification within IEEE Std 802.1Q instead of 802.1CQ.

START:
Receive BARC
FYI(condition)

condition

update MMRP

Revoked

END

 43

replacement
AB?

no

go to:
Initiate
Adding

yes

Alert BARC
Renew()[BI]!

action to
 resolve
duplicate

BARC
Delete()[BI]

delete

renew

ARC Claimant Application Process:
BARC Management

Renewed

Offer action to
 add AB?

go to:
Initiate
Adding

yes

no

ARC Claimant Application Process:
MAAP Management

START:
Receive

Outcome(X)
[AR]

END

 44

replacement
AB or AR?

no

go to:
Initiate
Adding

yes

 45

BARC Registrar: BARCPDU Processor – ingress

ENDS1

BARCPDU
(I1,S1,
I2,S2

[,token])

D or T
Disc(S1,I1,I2)

V or R
if I1 is active then

BARC(S1,I2,token)! to RABIA I1

N or C

BARC(S1)! to MBI I1
MC

BARC(S1,I2)! to MBI I1
MD

sBARC
(i1:s1,
i2:s2

[,token])
{da[,sa]}

send BARCPDU
with I1=i1,S1=s1,

I2=i2,S2=s2
[,T=token]

to da from sa

if sa is null, use default

END
could repeat, with
repetition count

based on S1

BARC Registrar: BARCPDU Processor – egress

 46

BARC Registrar Application: Disc Processing

Disc(State,BI,SA)
from

BARCPDU
Processor

select RABIA based on
•BI request (including AB size)
•BARC MBI Claimant States
•BARC RABI Registrar States
and values of Expire_Timer

END

InviteD(BI, RABIA,SA)!

InviteT(N, RABIA,SA)!

State

D

T

BARC Registrar Application: MAAP_Disc Processing

MAAP_Disc
(AR,SA)

from
RABI Registrar

select RABIA based on
•AR request (including AR size)
•BARC RABI Registrar States
•BARC MBI Claimant States

ENDInviteT(N, RABIA,SA)!

 47

BARC Registrar Application:
MBI Claimant Management

select MBI and da considering:
• BARC RABI Registrar States
• BARC MBI Claimant States
• most recent Outcome content

START:
Initiate

Adding or
Deleting

BARC
Add(da)[MBI]

C

END

result of
Outcome(result)

[MBI]

U,V

Adding

BARC
Delete(MBI)

END

declare MBI
address claim
using MMRP

ENDtry again? no

yes

Deleting

START:
Receive BARC
FYI(condition)

condition

Renewed

END

 48

replacement
MBI?

no

go to:
Initiate
Adding

yes

Alert BARC
Renew()[MBI]!

action to
 resolve
duplicate

BARC
Delete()[MBI]

delete

renew

MBI Claimant Application Process:
BARC Management

	BARC 1
	BARC 2
	BARC 3
	BARC 4
	BARC 5
	BARC 6
	BARC 7
	BARC 8
	BARC 9
	BARC 10
	BARC 11
	BARC 12
	BARC 13
	BARC 14
	BARC 15
	BARC 16
	BARC 17
	BARC 18
	BARC 19
	BARC 20
	BARC 21
	BARC 22
	BARC 23
	BARC 24
	BARC 25
	BARC 26
	BARC 27
	BARC 28
	BARC 29
	BARC 30
	BARC 31
	BARC 32
	BARC 33
	BARC 34
	BARC 35
	BARC 36
	BARC 37
	BARC 38
	BARC 39
	BARC 40
	BARC 41
	BARC 42
	BARC 43
	BARC 44
	BARC 45
	BARC 46
	BARC 47
	BARC 48

