
P802.1CQ/D0.6
Preview

v03

Roger Marks
(EthAirNet Associates)

P802.1CQ Editor
2021-06-04

thanks to Antonio de la Oliva
for review and constructive comments 1

Summary
• P802.1CQ/D0.5 was reviewed in TG Ballot.

• Comment resolution was completed in November.

⁃ Address Blocks were introduced for address claiming

• In March, Editor presented “Block Address Registration and Claiming (BARC)”

⁃ cq-marks-BARC-0321-v00.pdf

⁃ address blocks used for registrar-managed addresses as well

⁃ Address Registration and Claiming (ARC)

⁃ address blocks, and also claiming address ranges using MAAP

⁃ presented also to IEEE 1722 Working Group

• Main issues raised in March concerned VLAN operation

• This contribution previews P802.1CQ/D0.6

⁃ refinements and details since March presentation

⁃ discussion on improved VLAN support

⁃ v01 presented to TSN at May 802.1 Interim; this version (v03) adds detail 2

BARC assigns MAC Addresses in Address Blocks
1) Address Blocks (ABs) are sets of local addresses.

2) An AB includes equal-sized unicast and multicast address subblocks.

3) No BARC address falls within more than one AB.

4) An Address Block Designation (ABD) is a CABA or a RABI.

5) Claimable AB Address (CABA) is claimable by a Claimant without using a Registrar.

• identifies Claimable Address Blocks (CABs) holding Claimable Addresses (CAs)

• CABA is a multicast MAC address, not in any AB, and used as a DA.

6) RABI

⁃ identifies a Registrable Address Block (RAB) holding Registrable Addresses (RAs)

⁃ Registrable Address Block Indicators (RABIs): held in inventory of a Registrar

⁃ may be assigned to Claimants

⁃ may be claimed by Registrants

7) A large set of Temporary Unicast Addresses (TUAs) is specified

⁃ useful for initial discovery by Claimant lacking a unicast address

 3

MAC Address Categorization

 4

indicates, by inspection

CABA, CAB Size, CAB
(including all other CAs in CAB)

CAB Size, CAB

note: ~6.9E10 to choose amongTUA temporary unicast address

BABI Size
[Basic ABI Size]

RA
[IRA=unicast
GRA=multicast]

registrable address, in registrable
address block (RAB)

CAB AddressCABA

claimable address, in
claimable address block
(CAB)

CA
[ICA=unicast
GCA=multicast]

Expanded namedeterminable
via inspection:

U

U,M

M

U,M

I/G

RAB Size, BABI Size, RAB,
MABI Size [Multiple ABI Size]RABI RAB Identifier not an

address

AB
(including all RAs in AB)ABD Address Block Designation

(CABA or RABI)
not an

address

Address Block Designation (ABD) Categorization

CAB Size, CABCAB addressCABA M

BARC MAC Address Structure

 5

N1
N0

N2

N11

N5

N8

N5
N6

N9
N10

N6
N7

for registrable addresses, r=1; for claimable addresses, r=0

m is the usual multicast (I/G) bit; 111 is local “SAI” range per IEEE Std 802c

12 nibbles
per 48-bit
address

• address block includes subblocks of
⁃ 16jk claimable addresses, or
⁃ 16jk registrable addresses (or aggregated into larger blocks)

• for claimable addresses, i distinguishes
⁃ Claimable Addresses (CAs) from
⁃ CABAs

⁃ identifiers that are also used as addresses
• see Appendix for details

r j k

1 1 1 m

i

0000 for claimable addresses

CA
CABA
TUA

0
0
0

r i jk m
I/G
1
0

1
0
0 0

CAB
Size

RA 1 I/GBABI
Size

RABI
Option

Claiming (simplified)
CABA4

LAN

CABA5

tentative
CABA1

CABA3

CABA2

CABA1

(1) CABA1: DISCOVER state

(2) (unicast) CABA1: CLAIMED state

 6

CABA4

LAN

CABA5

tentative
CABA6

CABA3

CABA2

CABA1

CABA4

LAN

CABA5

CABA6

CABA3

CABA2

CABA1
(4) CABA6: CLAIMED state
start listening to CABA6

Claimant of CABAX AB
listens to CABAX
multicast address

(1) CABA1: DISCOVER state

(1) CABA6: DISCOVER state

multicast
uniicast

• Claimant need not be aware of Registrar when initiating a claim.

• Registrar maintains an inventory of RABIs.
– a protocol specifies how Registrars acquire RABIs.
– set of RABs is disjoint from the set of CABs

– AB is either claimable (CAB) or registrable (RAB); not both

• Registrar listens for all messages to a CABA.
– r=0, i=0, m=1, i.e. DA begins 00**-1111

• [MMRP NumberOfValues field is 13 bits]

• Registrar can respond to a DISCOVER with an offer of a RABI in its
inventory.

– The offer can also defend the DISCOVER’s CABA.
– Registrar confirms registration of request for offered RABI.

• Pre-claim Inquiry lets Claimant reach Registrar or Advisor.
– Client can learn of Registrars and received Claim proposals. !7!

Registrar

Operation with Registrars
RABI4

LAN

Registrar
RABI5

Claimant

RABI3

RABI2

Registrar

(1) CABA1: DISCOVER state

(2) (unicast) RABI1: OFFERED state

(1) CABA1: DISCOVER state
(2) (unicast) RABI5: OFFERED state

RABI4

LAN

Registrar

RABI1

RABI3

Registrar

(1) CABA1: DISCOVER state

RABI2

!8!

(3) (unicast) RABI1: REQUESTED state

(4) (unicast) RABI1: REGISTERED state

multicast

uniicast

Inquiry to (anticipated) Registrar or Advisor

RABI4

RABI5

Claimant

CABA3

!9!

RABI4

RABI5

CABA3

Registrar

Claimant

(1) ABD: INQUIRY

(2) RABI1: OFFER

BD is CABA or RABI
DA could be, for example:
• ÒNearest Customer BridgeÓ (NCB) address

01-80-C2-00-00-00 (non-forwarding)
• stored unicast Registrar Address
• the null CABA (CABA0)

Registrar

(1) ABD: INQUIRY

(2) (CABAp or RABIp) : PROPOSED [and/or Registrar Address]

(3b) RABIp: INQUIRY

(4b) RABI1: OFFER (based on RABIp)

(3a) CABAp: DISCOVER

Advisor or
Registar

Advisor cannot register ABDs;
can propose ABD and Registrar address

multicast

uniicast

BARC Design
¥ A BARC architecture follows, with details including state machines.

! additional details in Appendix

¥ BARC (Block Address Registration and Claiming) is put into the broader context of
Address Registration and Claiming (ARC), which supports both:

! address blocks (ABs), identiÞed by Address Block IdentiÞers (ABIs)
! address ranges (ARs), excluding addresses speciÞed by BARC

¥ ARC is the general protocol
! BARC handles ABI Registration and CABA Claiming
! existing MAAP handles AR Claiming

"10"

ARC
Claimant

ARC Architecture Ð ARC Claimant

ABD Claimant

ABD n

ABD C

ABD B

ABD A
state machine

ARC Claimant
Application

LLC

Seek(sa)[ABD]
Request(sa,token)[ABD]
Delete()[ABD]

Outcome(result)[ABD]
FYI(status[,value])[ABD]

Add(sa)[AR]
Drop()[AR]

Outcome(result,AR)

AR Claimant

!11!

MAD

MMRP

ingress MAC address Þlter

Ingress(status)[ABD]

AVTPDU(AR)BARCPDU(I1,S1,I2,S2[,I3,S3])

AR
state machine

MAAP
state machine

rMAAP(state,AR)!
sMAAP(event!)

cBARCPDU_in

ABD Claimant sets ingress MAC address for
¥ Claimed CABA

Application also enabled to set Þlter to pass:
¥ AB addresses as adopted for receiving

Filter always set to pass MAAP multicast address

AddABD Process

cBARCPDU_out

sBARC

BARC![ABD]

sBARC

BARCPDU(I1,S1,I2,S2[,I3,S3])

BARCPDU Summary

 12

I1

E

t

S1

Ethertype

subtype [tbd, per 1722 WG; see IEEE 1722 Table 6]

[tbd; could be 22F0 (MAAP Ethertype)]

State 1
D (Discover), C (Claimed), V (Vacant),
R (Registered), I (Inquiry),
P (Proposal), A (address),
RD, RC, RV, RX, N(null)

Identifier 2 48-bit address or ABI

DA dest addresss DA

SA source address

I2

S2 State 2 O (Offered), A (address), N (null)

Identifier 2 48-bit address or ABI

S3 State 3 A (address), T (token)

field name purpose content

AVTPDU Summary

E

t

Ethertype

subtype FE per IEEE 1722 Table 6

22F0 (MAAP Ethertype)

DA dest addresss 91:E0:F0:00:FF:00 for MAAP multicast

field name purpose content

I3 Identifier 3 48-bit address or token

CABA Claim Procedure

!13!

ABD Claimant Existing CABA Claimant

DC

CABA:D
CABA

uni

uni

sa

CABA:C

CABA:V
CABA:C

CABA:D

holding claim CABA;
listening to CABA

claiming
a CABA

CABA
State
is C

(Claimed)

CABA State
goes to D
(Discover)

DA

SA; could be TUA
DC timer

starts
receives

PDU

sends
PDU

ABD:state
uni:A

PDU

CABA State
goes from C to

V (Vacant)
(state machine

destroyed)

decision to claim CABA

0:N

CABA1:D
CABA1

uni

CABA1:C
CABA1

sa

CABA1:D

CABA1:C

start listening to
CABA1

not listening
to CABA1, so

PDU not
received

CABA1 State
goes to D

CABA1 State
goes

from D to C
(Claimed)

uni:A

adopt CABA1 AB

decision to claim CABA1

DC

sa:A

SA; could be TUA

uni a unicast address

sa source address

TUA temporary unicast address

SA; could be ICA

ICA individual (unicast)
claimable address

ABD Claimant/Registrar Procedure

!14!

ABD Claimant RABI Registrar

CABA:D
CABA

uni

uni

RegA

RABI:O

CABA:V

RABI:O

CABA:D

begins
without

knowledge
of Registrar

CABA:C

select RABI with traits (such as AB size) of
received CABA

Even after CABA state machine goes to V
state, further o! ers can arrive from other
Registrars and transition other RABI state
machines to O state.

RABI:O

uni:A

decision to claim CABA

CABA State goes
from C to V (Vacant)

RABI state machine
changes from state V to
state O (O! ered); state
machine stores RegA.

receives
PDU to any

CABA RABI is controlled via ABD state machine in
Claimant and a RABI state machine in Registrar.

new RABI State goes to O

RegistrarÕs
unicast
address

RABI:V
o! er times outRABI1:O

RABI:V

o! er times out

RegA:A

RABI Registration

!15!

ABD Claimant RABI Registrar

RegA

IRA

RABI:R

RABI:Q

T

IRA

IRA &
token

stored in
RABI
State

adopt AB per RABI

IRA:A

RABI:Q

RABI State goes
from O to Q
(Request)

start listening to IRA
unicast address

IRA selected from RABI
IRA and token T stored in

RABI State
T

IRA

decision to register claim to RABI

RABI:ORABI:O

RABI State goes
from O to R

IRA

RegA

IRA:A

RABI:R

RABI R State Renew timer reset

RABI:R
RegistrarÕs

unicast
addresstoken:T

token:T

IRA individual (unicast)
registrable address

Claimant-initiated
withdrawal

Renewal and Withdrawal of a Registration

!16!

sa

RABI:R

RABI:V RegA

sa

RABI:VRABI:V

RABI:V

IRA

RegA

RABI:V

or

repeated claim
(e.g. to renew)

RegA

Registrar-initiated
revocation

Note 1: The PDU will be rejected if
the enclosed token and IRA do not
match those in the RABI State
Machine. This interferes with
counterfeit PDUs.

Note 2: IRA and token are included
only in unicast messages, limiting
their distribution in the network.

Note: PDU rejected unless RegA, IRA, and token match the
RABI State Machine. PDU not delivered if IRA is incorrect.

IRA T

IRA T

IRA:A

IRA:A

IRA:A

decision to renew claim to RABI

decision to withdraw claim to RABI

RABI:R

RABI State goes
from R to V

RABI State goes
from R to V

decision to revoke claim to RABI

IRA

RegA

RABI:V

IRA:A

RABI:R

RABI:R

token:T

token:T

token:T

token:T

IRA individual (unicast)
registrable address

 17

DA
unicast

uni:A
RegA

RABI:O
RABI:O

ABD:I
State

indicated as
 I (Inquiry)

DA is an address of an expected Registrar
or Advisor. This could be a configured or
previously learned unicast address. It could
also be a non-forwarding Nearest Customer
Bridge address, if a response is anticipated
from an immediately connected bridge of
unknown address. DA could also be the
specified null CABA (CABA0).

uni:A

Inquiry followed by Registrar Offer
decision to Inquire based on

PRABI or CABA

ABD Claimant RABI Registrar

offer times out

ABD (PRABI or CABA) is a not
claimed for use, only to indicate
traits, including AB size.

Register response to
Inquiry is identical to its
response to Discover,
except that no “C”
identifier is included
since there is no claim
to defend.

RABI State goes
from V to O

No state.

RABI:O

new RABI State goes to O

Registrar’s
unicast
address

RABI:V
offer times out

RABI:V

RegA:A

select RABI with traits (such as AB size)
of received ABD (PRABI or CABA)

 18

DA
unicast

uni:A
sa

ABD1:P ABD1:P

ABD:I
State

indicated as
 I (Inquiry)

DA is an address of an expected Registrar
or Advisor. This could be a configured or
previously learned unicast address. It could
also be a non-forwarding Nearest Customer
Bridge address, if a response is anticipated
from an immediately connected bridge of
unknown address. DA could also be the
specified null CABA (CABA0).

uni:A

Inquiry followed by Advisor Proposal

decision to Inquire based on
PRABI or CABA

RegA:A

ABD Claimant Advisor

ABD1 State goes
from V to P

ABD1 is the Advisor’s ABD proposal
(state indicated as “P”). This could
be a CABA (possibly null CABA) or
PRABI (possibly null PRABI).

ABD (PRABI or CABA) is a not
claimed for use, only to indicate
traits, including AB size.

An “A” state indicator is used to
denote RegA, the address of a
Registrar, proposed as a Registrar
for the Claimaint. Set to 0 for no
recommendation. Registrar can
propose its own address.

No state.

ABD1:V

proposal times out

No state.

ABD CABA or PRABI

BARC(O,sa)!

 19

BARC(D,sa)!

BARC(C,sa)! || BARC(D,sa)! || Delete()!

DiscoverTimer==0

BARC(R,state_sa,state_token)!

DISCOVERY (D)

state_sa=sa;
sBARC(ABD:D,state_sa:A){ABD,state_sa};
DiscoverTimer=DiscoverLifetime;

CLAIMED (C)

da=sa;
if da=0 da=ABD;
Ingress(pass);
sBARC(ABD:C,state_sa:A){da,state_sa};
Outcome(C);
ClaimTimer=ClaimLifetime;
ClaimRenewTimer=ClaimRenewLifetime;

OFFERED (O)

state_RegA=sa;
FYI(Offered);
OfferTimer=OfferLifetime;

REQUESTED (Q)

state_sa=sa;
state_token=token;
sBARC(ABD:Q,sa:A,token:T){state_RegA,sa};
RequestTimer=RequestLifetime;

REGISTERED (R)

Outcome(R);
RegTimer=RegLifetime;
RegRenewTimer=RegRenewLifetime;

VACANT (V)

ABD Claimant: ABD State Machine

if state_initiated Ingress(filter);
if state_initiated Outcome(V);
state_initiated=TRUE;

BARC(O,sa)!

Request(sa,token)!

RegRenewTimer==0

CREATED

UCT

state_initiated=FALSE;

BARC(C,sa)!

FYI(alert)

RegTimer==0

ClaimRenewTimer==0

ClaimTimer==0 || Delete()!

EXPIRED (E)

Ingress(filter);
FYI(expired);
ExpireTimer=ExpireLifetime;

Seek(sa)!

Seek(sa)!

BARC(O,sa)!

OfferTimer==0

RequestTimer==0

BARC(V,state_sa,state_token)!
|| Delete()!

ExpireTimer==0

BEGIN

PROPOSED (P)

BARC(P,sa)!

state_RegA=sa;
ProposeTimer=ProposeLifetime;

ProposeTimer
==0

 20

ARC Claimant: cBARCPDU_in

ENDS2

BARCPDU
(I1,S1,
I2,S2

[,I3,S3])

ARC Claimant: cBARCPDU_out

cBARC
(i1:s1,
i2:s2

[,i3:s3])
{da[,sa]}

send BARCPDU
with I1=i1,S1=s1,

I2=i2,S2=s2
[,I3=i3,S3=s3]
to da from sa

if sa is null, use default

END

O

if I2 is not (null RABI) then
BARC(O,I1)! to I2

A

if State(I3) is not V then
 BARC(C,I1)! to I3

if State(I1) is not V then
BARC(S1, I2 [,I3])! to I1

could repeat, with
repetition count

possibly based on
S1 and S2

S3
C

null

P if State(I2) is V or E then
BARC(P, I1)! to I2{Note: S1 is A}

{Note: S1 is D,C,R,Q,V,I}

{Note: BARC(P,RegA)

{Note: S1 is A}

{Note: square-bracketed parameters are sometimes absent.}

ARC Claimant Application Process: AddABDSTART:
Initiate
Adding

seeking
AB or AR?

AB

AR

 21

no

select sa
select CABA

Seek(sa)![CABA]

Cresult of
Outcome(result)

[CABA]

V

END

Seek
again?

no

yes Request an
OFFERED

ABD?

no
select IRA from AB as sa

generate token
Request(sa,token)[ABD]

configure ingress filter,
and declare with MMRP,

per adopted addresses to
be used

END

Inquiry?
yes

yes

AR Claimant
Add(sa)[AR]Select (AR)

considering
OFFERED

ABs,
retry?

yes

no

Drop
any ABD or

AR?

result of
Outcome

(result,AR)

START:
Initiate

Dropping

no

yes
F

A

result of
Outcome(result)

[ABD]

go to
START

V

R

adopt addresses from ABD

Request an
OFFERED

ABD?
no

yes

select DA:
 - RegA from O and P states
 - NCB
 - CABA0

select ABD

start Inquiry_timer
sBARC(ABD:I,sa:A){DA,sa}
Inquiry_timer expiration

select sa

select sa

AR Claimant Procedure

 22

AR Claimant RABI Registrar

AR:D

uni
RegA

RABI:O

RABI:O

AR State
goes to D

(Discovery)

RABI
State

goes to O

select RABI with traits (such as size) of AR

RABI:O

new RABI state
machine in

state O
(Offered)

AR:V
oblivious to
Registrar

AR State remains as D

AR State V
(Vacant)

MAAP DA

Existing AR Claimant
either MAAP or BARC

AR Claimant

AVTPDU
Defend

AR:D

AR:D

AR Claimant works exactly like MAAP in a
group of mixed AR and MAAP Claimants.

MAAP AVTPDUs are received by BARC
Registrar. If the AVTPDU is a MAAP
Probe/v2, then the Registrar responds
just as it does to a Targeted Claim. uni

AVTPDU
Probe/v2

AR

AR:V

AR State V
(Vacant)

AR State
goes to D

(Discovery)

MAAP DA
uni

AVTPDU
Probe/v2

AR

AVTPDU Probe/v2 is
identical to AVTPDU
Probe/v1 except for
MAAP version number.

AR Claimant and (legacy) MAAP
Claimant respond identically to
AVTPDU Probe/v2.

AR:V
AR State
goes to V
(Vacant)

Device can optionally register the
Offer via BARC, while the AR may
independently be claimed if not
defended by a MAAP Claimant.

RegA:A

AR address range

 23

BARC Registrar: AVTPDU Processor

ENDmaap_version

AVTPDU
(maap_version,
message_type,

AR)
at MAAP DA

from SA

Disco(“M”,AR,SA,[VID])

not 2

message_type
2 1

not 1

Event

AR State Transition Table

VACANT (V) DISCOVERY (D)

State

 24

Add(sa)! sMAAP(Begin(AR,sa)!)
DISCOVERY

rMAAP(AR:Defend)! Outcome(A,AR)
ACQUIRED

ACQUIRED (A)

rMAAP(AR:Initial)! Outcome(F,AR)
VACANT

Outcome(X)[AR]
VACANT

rMAAP(AR:State!) invokes an event at the state machine when the MAAP state changes to State

sMAAP(Action!) invokes Action! event at MAAP state machine

BARC
Registrar

ingress MAC address filter accepts BARCPDUs addressed to any CABA
and MAAP multicast address for AVTPDUs

BARC Architecture – Registrar

 25

BARC Architecture – Registrar

RABI Registar

RABI n
RABI C

RABI B

RABI A
state

machine

BARC Registrar
Application

Invite(address,state,da)[RABI]
Try(sa)[RABI]
Remove()[RABI]
Occupied()[RABI]
Deoccupy()[RABI]

Disco(“M”,AR,SA,[VID])

LLC

Outcome(result)[RABI]
FYI(status)[RABI]

AVTPDU(AR)

rBARCPDU_in

BARC![RABI]
Disco(State,ABD,SA,[VID])

AVTPDU Processor

BARCPDU(I1,S1,I2,S2[,I3,S3])

rBARCPDU_out

BARCPDU(I1,S1,I2,S2[,I3,S3])

sBARC

Disco Process
ClaimCheck Process

ClaimCheck(State,RABI,SA)

sBARC

sBARC

 26

BARC Registrar Application: Disco Process

Disco(State,ABD,SA,[VID])
from rBARCPDU_in

END

Invite(ABD_out,State_out,SA)!
to RABI

Disco (State,Range,SA,[VID])
from AVTPDU Processor

I

D

State

ABD_out=ABD to defend ABD;
otherwise ABD_out=null CABA
State_out=C

ABD_out=0
State_out=NM

respond
with

Proposal

Offer

sBARC(RegA:A,ABD:P){SA}

select RABI to offer, based on:
•Disco State (BARC: D or I; MAAP:M)
•Disco ABD request, including:

-size
-CABA or PRABI

•MAAP Range request (including size)
•VID
•BARC ABD Registrar States

set RABI=null for no offer

RegA = address of proposed Registrar
ABD=proposed CABA or PRABI

Advisor

RABI Claim Procedure

 27

RABI1 Registrar Existing RABI1 Registrar

RABI1:RD
CABA0

uni

uni
RegARABI1:RV

RABI3:RD
uni

RABI3:RC
CABA0

uni

RABI1:RD

RABI3:RD

RABI3:RC

claiming
RABI1

RABI2 State
is RC (Claimed)RABI1 State

goes to RD
(Discover) SA

timer
starts

sends
PDURABI1 State

goes to RV
(Vacant)

before timer
expires

timer
expires

No objection, so no response

May vacate overlapping RABI
states in order to resolve conflict.RABI3

(new RABI)
 State goes

to RD

RABI3
State

goes to RC
(Claimed)

A RABI Registrant could be specified. Alternatively, a
Primary RABI Claimant could be configured to hold and
defend many RABIs in reserve, ensuring that RABIs are
not excessively claimed. This would suffice in many
cases.

decision to claim RABI1
RABI2:RC

decision to claim RABI3
CABA0

DA is the null CABA

RABI:state

observes an overlap
between RABI1 and held

RABI2

RABI1:RC

uni:A

uni:A

uni:A

RegA:A

 28

BARC Registrar: rBARCPDU_in

ENDS1

BARCPDU
(I1,S1,
I2,S2)
[,I3,S3]
[,VID])

D or I
Disco(S1,I1,I2[,VID])

Q or V
if I1 is active then

BARC(S1,I2,S3[,VID])! to RABI I1

N or C

RD,RC,RV,RX

BARC Registrar: rBARCPDU_out

ClaimCheck(S1,I1,I2)

sBARC
(i1:s1

[,i2:s2])
[,i3,s3]

{da}

send BARCPDU
with I1=i1,S1=s1,

[I2=i2,S2=s2]
[I3=i3,S3=s3]

to da from default sa
(if i2 is null, then

I2=default sa)

END

could repeat,
with repetition

count based on
S1

 29

OFFERED (O)

sBARC(address:state,RABI:O){da}
OfferTimer=OfferTimerLifetime

REGISTERED (R)

R_sa==sa
R_token==token
R_vid==VID
sBARC(RABI:R,R_sa:A,token){R_sa,RABI}
RegTimer=RegLifetime;
RegRenewTimer=RegRenewLifetime;

VACANT (RV)

Registrar: RABI State Machine

if state_initiated Outcome(V);
state_initiated=TRUE;

Invite(address,state,da)!

BARC(Q,sa,token[,VID])!

RegRenewTimer==0

CREATED

UCT

state_initiated=FALSE;

RegTimer==0 || Remove()! ||
BARC(V,R_sa,R_token,R_vid)!

EXPIRED (RE)

FYI(expired);
sBARC(RABI:RV)){CABA0}
ExpireTimer=ExpireLifetime;

BARC(O,sa)!

OfferTimer==0

CLAIMED (RC)

sBARC(RABI:RC){CABA0}
ClaimTimer=ClaimLifetime;
ClaimRenewTimer=ClaimRenewLifetime;

BARC(Q,R,token,R_vid!

ExpireTimer==0

DISCOVERY (RD)

sBARC(RABI:RD){CABA0}
DiscoveryTimer=DiscoveryTimerLifetime

Try(sa)

OCCUPIED (RO)

Remove()!
DiscoveryTimer==0

ClaimRenewTimer==0

ClaimTimer ==0 || Remove()!

BEGIN

Occupied()!

Deoccupy()!

VLANs
• All address assignments are specific to the VLAN (or VLANs) in which
messaging is communicated and under which the assignment was
completed.

• Usage of any address may need to be limited to the VLAN or VLANs under
which it was obtained.

• Due to the possibility that the same unicast address may be assigned in
different VLANs, Independent VLAN Learning (IVL) may be needed in
bridges, per IEEE Std 802.1Q Annex F (F.1.2).
⁃ This requirement could be relaxed in some cases
⁃ e.g. when assigned unicast addresses are declared via MMRP

(instead of learning)

• This issue is common to claiming protocols generally.

• Some approaches follow.

• All address assignments are specific to the VLAN (or VLANs) in which
messaging is communicated and under which the assignment was
completed.

• Usage of any address may need to be limited to the VLAN or VLANs under
which it was obtained.

• Due to the possibility that the same unicast address may be assigned in
different VLANs, Independent VLAN Learning (IVL) may be needed in
bridges, per IEEE Std 802.1Q Annex F (F.1.2).
⁃ This requirement could be relaxed in some cases
⁃ e.g. when assigned unicast addresses are declared via MMRP

(instead of learning)

• This issue is common to claiming protocols generally.

• Some approaches follow.

 30

Claiming with VLAN: IVL
CABA1

IVL LAN
(independent VLAN learning)

CABA4

CABA1

CABA3

CABA6

CABA1
CABA2

 31

IEEE Std 802-2014 says “Local MAC addresses need to be unique on a LAN or bridged LAN
unless the bridges support VLANs with independent learning.”

With IVL, each VLAN has an independent forwarding table.
-but IVL is not always possible

BARC claiming on each VLAN is independent
a duplicate address may occur in more than one VLAN; that is not harmful if managed carefully

A claimant with multiple VLANs needs to claim in each VLAN.
Claimed address is usable only in claimed VLAN:

Claimant needs to bind address to VLAN
For convenience, Claimant may claim the same address in each of its VLANs

-Still, requires multiple claim messages and multiple forwarding table entries.
-Device needing many VLANs should consider an EUI

 32

Claiming with VLAN: SVLCABA1

SVL LAN
(shared VLAN learning)

CABA4

CABA1

CABA3

CABA6

(1) CABA1:D

(2) CABA1:D

With SVL, VLANs share a forwarding table.

BARC claiming on each VLAN is independent
an address could become a duplicate, existing in more than one VLAN
forwarding table is limited to one entry per address, so duplication is catastrophic.

Registrar with VLAN
CABA1

SVL or IVL LAN

CABA4

CABA1

CABA3

CABA6

Registrar

 33

(1) CABA1:D

(1) CABA1:D

(1) CABA1:D

(2) CABA1:O

Network is configured with Registrar on all active VLANs on which BARC is used.

BARC claim from any VLAN is delivered to Registrar.
-O! er delivered on Claimant’s VLAN

Registrar ensures that registered address is unique across all (or perhaps only some) of its VLANs.
-SVL or IVL will work

Registrar needs to remember over which VLANs the address was assigned.
-should be retained in State Machine

 34

Registrar with Asymmetric VLAN
CABA1

SVL LAN
CABA4

Registar

SVL is used for Asymmetric VLAN (IEEE Std 802.1Q Annex F.1.3)

Registrar can assign address to be unique across all VLANs available to the Registrar.

(1) CABA1:D

(1) CABA1:D

(2) CABA1:O

(2) CABA1:O

Summary
¥ Claimants operate with or without Registrars.

¥ Multiple registrars are supported, holding claims of disjoint RABIs.

¥ The block discretization provides:
Ð a vast set of addresses to a LAN
Ð a large set of temporary unicast addresses
Ð operational efÞciency and simplicity
Ð both unicast and multicast addresses to Claimant

Ð unicast and multicast subblocks share the same range, except for the m bit
Ð could be exploited

Ð devices needing both unicast and multicast addresses need make only one claim

¥ Could integrate with MMRP to limit propagation and eliminate learning of unicast AB
content.

Ð MMRP needs to efÞciently handle address ranges
Ð BARP could be speciÞed as alternative MRP application

(e.g. would understand an ABD)

!35!

Appendix 1
¥ additional details on BARC addresses and identiÞers

!36!

BARC address is CA: Claimable Address
within CAB: Claimable Address Block

identified by ABI: CAB Size jk

BARC Address Parsing

N9
msb
N10
msb

not 111

111MAC
address

!37!

GCA: Group CA (Multicast)

CABA of Size jk
Claimable ABD

16jk ICAs
16jk GCAs

*lsn= least signiÞcant nibbles

ICA: Individual CA (Unicast)

0

1

r
1

0

i

0
m

m
1

1

0

GRA: Group CA (Multicast)

IRA: Individual CA (Unicast)

1

0
m

jk
lsn*

0

non-0

TUA: temporary unicast address CA indicates CABA

reserved

reserved

r j k

1 1 1 m

iN11

N10

N9

N9

0

non-0

jk

0

non-0

CABA and CA, CAB Size 0-3

• 6.9E10 Size 0 CABAs
• 1 CA/subblock

 38

CAB Size C=0 CAB Size C=1 CAB Size C=2 CAB Size C=3
CABA CAB CABA CAB CABA CAB CABA CAB

2 contiguous subblocks per CABA (one unicast, one multicast)

• 4.3E9 Size 1 CABAs
• 16 CAs/subblock

• 2.7E8 Size 2 CABAs
• 256 CA/subblock

• 1.7E7 Size 3 CABAs
• 4096 CAs/subblock

*
*

*
X3

X5
X6

X4

X8
X7

1 *1 1
0

1 11

00 0

0

X3

X5

X1

X6

X0

X4

X2

X8
X7

1 11 1
0

0 00

00 0

0

X3

X5

X1

X6

X0

X4

X2

X8
X7

1 *1 1
0

001

00 0

0

0

X3

X5

X1

X6

X4

X2

X8
X7

1 11 1
0

0 10

00 0

0

*

X3

X5

X1

X6

X4

X2

X8
X7

1 *1 1
0

0 11

00 0

0

0
0

X3

X5
X6

X4

X2

X8
X7

1 11 1
0

1 00

00 0

0

*
*

X3

X5
X6

X4

X2

X8
X7

1 *1 1
0

1 01

00 0

0

0
0

0
X3

X5
X6

X4

X8
X7

1 11 1
0

1 10

00 0

0

* indicates wildcard (any value)

CABA/CAB Math

!39!

N11

N10

0 j k

1 1 1 1

0

CABA

1 *1 1

kj10

CA
!CABA indicates the CAB
!CA indicates the CABA
!C=jk indicates the CAB Size
!each CAB subblock includes 16C contiguous addresses

C(X) = (X&0x300000000000) / 0x100000000000 [extracts CAB Size C when X is CABA or CA]
Cmask(C) = ~(0x410000000000 + 0x10 **C Ð 1) [CABA mask, per Size; used to create CABA from CA]
CABA(CA) = CA&Cmask(C(CA))

Example: [Note: Underlining on the middle four nibbles is shown only as a reading aid.]
! CA = 0x 6F012345 6789 = 0 110 -111 1-0000-0001-0010-0011-0100-0101-0110-0111-1000-1001
! C(CA) = 0x 2000 0000 0000 / 0x 1000 0000 0000 = 2
! Cmask(0x 2) = ~ (0x4100 0000 0000 + 0x0100 - 1) = ~(0x4100 0000 00FF) = 0xBEFFFFFFFF00
! CABA(CA) = CA&0xBEFFFFFFFF00 = 0x 2E012345 6700

A CA is within CABAx if and only if CABA(CA) = CABAx

!this requires identical CAB Size

The CAB of CABAx is the set of all CAs that satisfy CABA(CA) = CABAx

Lowest ICA in CABA: CABA | 0x400000000000 (example: 0x 6E012345 6700)
Lowest GCA in CABA: CABA | 0x410000000000 (example: 0x 6F012345 6700)

Highest ICA in CABA: (CABA | 0x400000000000) + 0x10 **C(CABA) Ð 1 (example: 0x 6E012345 67FF)
Highest GCA in CABA: (CABA | 0x410000000000) + 0x10 **C(CABA) Ð 1 (example: 0x 6F012345 67FF)

&
|
~

bitwise AND
bitwise OR

bitwise NOT
/ divide

ABD (CABA/RABI) Format

!40!

N11

N10

0 j k

1 1 1 1

0

CABA

RABI

1 j k

a b

i

c

N11

N10

1 *1 1

kj10

CAB

1 j k

RAB

i

•CABA is both an ABD (indicating CAB) and a MAC address
•CAB indicates the CABA
•jk indicates the CABA size C
•the C least signiÞcant nibbles of the CABA are 0
•each CAB subblock includes 16C contiguous addresses)
•each CAB includes a unicast subblock and a multicast subblock
•no CA within a CAB is within any other CAB (that is, a CAB with a di fferent CABA

•RABI is an ABD (indicating RAB) and never used as a MAC address
•RAB does not fully indicate the RABI
•i indicates RABI Option (Options 0 and 1 provide independent RABIs/RABs)
•jk indicates the BABI Size B

- ÒBABIÓ for ÒBasic Address Block IndicatorÓ
•abcd indicates MABI Size M; those bits are not in the RAB addresses

- ÒMABIÓ for ÒMultiple Address Block IndicatorÓ
•RAB Size R=B+M
•the R least signiÞcant nibbles of the RABI are 0
•each RAB subblock includes 16R contiguous addresses
•each RAB includes a unicast subblock and a multicast subblock

1 *1 1d

RABI Aggregation
•RAB Size R=B+M

• for 48-bit addresses, set a=0; then R = jk + bcd ≤ 3 + 7 = 10, matching the 10 available nibbles N0-N9
• could use ijk as the BABI Size, and/or the full abcd as the MABI Size; e.g., for 64-bit addresses

•A RABI may aggregate other RABIs.
•A RABI of RAB Size R and MABI Size M can be disaggregated into:

•16 RABIs of RAB Size RÐ1 (MABI Size MÐ1), or
•162 RABIs of RAB Size RÐ2 (MABI Size MÐ1), or
•16n RABIs of RAB Size RÐn (MABI Size MÐn), or
• É 16 M RABIs of RAB Size B (MABI Size 0), or

•A RABI of RAB Size B (MABI Size 0) cannot be disaggregated.
•An RA appears in one and only RABI of each M.

r
1

0

RABI

CABAABD Address

ABD

RABI and RA, MABI Size 0, BABI Size 0-3

• 1.1E12 Size 0 RABIs
• 1 RA/subblock

 41

BABI Size 0 BABI Size 1 BABI Size 2 BABI Size 3
RABI RAB RABI RAB RABI RAB RABI RAB

2 contiguous subblocks per RABI (one unicast, one multicast)

• 6.9E10 Size 1 RABIs
• 16 RAs/subblock

• 4.3E9 Size 2 RABIs
• 256 RA/subblock

• 2.7E8 Size 3 RABIs
• 4096 RAs/subblock

*
*

*
X3

X5
X6

X4

X8
X7

1 11

X3

X5

X1

X6

X0

X4

X2

X8
X7

0 01

X3

X5

X1

X6

X0

X4

X2

X8
X7

001

0

X3

X5

X1

X6

X4

X2

X8
X7

0 11

*

X3

X5

X1

X6

X4

X2

X8
X7

0 11

0
0

X3

X5
X6

X4

X2

X8
X7

1 01

*
*

X3

X5
X6

X4

X2

X8
X7

1 01

0
0

0
X3

X5
X6

X4

X8
X7

1 1 ii i i i i i i1

X9X9 X9 X9 X9 X9 X9 X9
10 00 0 1 1 1 0 1 0 1 000 0 00 0 00 0* 1 1 * 1 1 * 1 1 *

* indicates wildcard (any value)

Aggregation Example: BABI Size 3, various MABI Sizes

 42

BABI Size 3

RABI

0
0

0
X3

X5
X6

X4

X8
X7

1 1i1

X9
0 00 0

MABI Size 0
RAB

*
*

*
X3

X5
X6

X4

X8
X7

1 1i1

X9
1 1 1 *

RABI

0
0

0
0

X5
X6

X4

X8
X7

1 1i1

X9
0 10 0

MABI Size 1
RAB

*
*

*
#

X5
X6

X4

X8
X7

1 1i1

X9
1 1 1 *

RABI

0
0

0
0

X5
X6

X8
X7

1 1i1

X9
0 00 1

MABI Size 2
RAB

*
*

*
#

X5
X6

X8
X7

1 1i1

X9
1 1 1 *

0 #

• • •

RABI

0
0

0
0

1 1i1
0 11 1

MABI Size 7
RAB

*
*

*
#

1 1i1
1 1 1 *

0 #

0 #
0 #

0 #
0 #

0 #

* indicates wildcard (any value) # indicates wildcard (any value)

aggregate
aggregate

aggregate

Example:
Hierarchical RABI Addressing with common Registrar

!43!

RABI

0

0

0

0

X5

X6

8-15

X8

X7

1 1i1

X9

0 10 0

MABI Size 1

RAB

*

*

*

#

X5

X6

8-15

X8

X7

1 1i1

X9

1 1 1 *

RABI

0

0

0

0

X5

X6

X8

X7

1 1i1

X9

0 00 1

MABI Size 2

RAB

*

*

*

#

X5

X6

X8

X7

1 1i1

X9

1 1 1 *

0 #

Held by Registrar

RABI

0

0

0

0

X5

X6

0

X8

X7

1 1i1

X9

0 10 0

MABI Size 1

RAB

*

*

*

#

X5

X6

0

X8

X7

1 1i1

X9

1 1 1 *

Assigned by Registrar to bridges, end stations, etc.
connected to Bridge 1

RABI

0

0

0

0

X5

X6

1

X8

X7

1 1i1

X9

0 10 0

MABI Size 1

RAB

*

*

*

#

X5

X6

1

X8

X7

1 1i1

X9

1 1 1 *

! ! !

common
RAB
preÞx

Assigned to Bridge 1
by Registrar

Bridge serves as Advisor to connected station;
proposes PRABI, and Registrar Address,
in response to an Inquiry.

Example:
Hierarchical CABA Addressing

!44!

Claimed by Bridge 1
Claimed by bridges, end stations, etc. connected to

Bridge 1

common
CAB
preÞx

Bridge serves as Advisor to connected stations;
proposes CABA in response to an Inquiry.

CAB Size C=3

CABA CAB

*

*

*

X3

X5

X6

X4

X8

X7

1 *1 1

0

1 11

00 0

0

0

0

0

X3

X5

X6

X4

X8

X7

1 11

1 10

00 0

1

0

0

CAB Size C=2

CABA CAB

0

0

X3

X5

X6

X4

X8

X7

1 11 1

0

1 00

00 0

0

*

*

X3

X5

X6

X4

X8

X7

1 *1 1

0

1 01

00 0

0

0 0

CAB Size C=2

CABA CAB

0

0

X3

X5

X6

X4

X8

X7

1 11 1

0

1 00

00 0

0

*

*

X3

X5

X6

X4

X8

X7

1 *1 1

0

1 01

00 0

0

1 1

!45!

REGISTERED (R)

Claimant as Registrar

CLAIMED (C)REGISTERED (R)

RABI Registar State MachineABD Claimant State Machine

RABI registered as a Claimant could be disaggregated and reassigned by a Registrar function managed jointly with the Claimant.

A RABI in the ÒREGISTEREDÓ state of the ABD Claimant State Machine could be considered to be in the Inventory of the
RABI Registrar State Machine (along with Claimed RABIs) and could be disaggregated, O! ered and Registered by that Registrar.

Inventory

Example:
Hierarchical RABI Disaggregation with Tiered Registrars

 46

RABI

0
0

0
0

X5
X6

8-15

X8
X7

1 1i1

X9
0 10 0

MABI Size 1
RAB

*
*

*
#

X5
X6

8-15

X8
X7

1 1i1

X9
1 1 1 *

RABI

0
0

0
0

X5
X6

X8
X7

1 1i1

X9
0 00 1

MABI Size 2
RAB

*
*

*
#

X5
X6

X8
X7

1 1i1

X9
1 1 1 *

0 #

Assigned to Bridge 1
by Registrar

Used by Bridge 1
directly

RABI

0
0

0
0

X5
X6

0

X8
X7

1 1i1

X9
0 10 0

MABI Size 1
RAB

*
*

*
#

X5
X6

0

X8
X7

1 1i1

X9
1 1 1 *

RABI

0
0

0
0

X5
X6

1

X8
X7

1 1i1

X9
0 10 0

MABI Size 1
RAB

*
*

*
#

X5
X6

1

X8
X7

1 1i1

X9
1 1 1 *

! ! !

common
RAB
prefix

Reassigned by Bridge 1 as secondary Registrar to
connected bridges, end stations, etc.

RABI Math 101

!47!

N11

N10

1 j k

RABI

11 1

kj1

RA

!jk indicates the BABI Size B
!bcd indicates the MABI Size M

i(X) = (X&0x040000000000) / 0x400000000000 [RABI Option, when X is RABI or RA]
B(X) = (X&0x300000000000) / 0x100000000000 [BABI Size, when X is RABI or RA]
M(X) = (X&0x070000000000) / 0x010000000000 [MABI Size when X is a RABI]
R(X) = B(X) + M(X) [RAB Size, when X is a RABI]
Rmask(N) = ~(0x0F0000000000 + 0x10 **N Ð 1) [mask, used below]

An RA is within RABIx if and only if RA&Rmask(R(RABIx)) = RABIx&Rmask(R(RABIx))
!this requires identical RABI Option and BABI Size

The RAB of RABIx is the set of all RAs that satisfy RA&Rmask(R(RABIx)) = RABIx&Rmask(R(RABIx))

Example:
! RABI = 0xF20123400000 = 111-0 010-0000-0001-0010-0011-0100-0000-0000-0000-0000-0000
! B(RABI) = 0x300000000000 / 0x100000000000 = 3
! M(RABI) = 0x020000000000 / 0x010000000000 = 2
! R(RABI) = 3+2 = 5
! Rmask(5) = ~(0x0F0000000000 + 0x10 **5 Ð 1) = ~(0x0F00000FFFFF)= 0xF0FFFFF00000
! RABI&Rmask(5) = 0xF00123400000

! RA = 0xFE0123456789 = 1011 -0 010- 0000-0001-0010-0011-0100-0101-0110-0111-1000-1001
! RA&Rmask(5) = 0xF00123400000 = RABI&Rmask(5)
! so RA is within RABI

i i

*c0 b

&
~

bitwise AND
bitwise NOT

/ divide
== binary equality

d

RABI Math 102

!48!

RABI RA

RABIcheck(RABI1,RABI2) determines whether RABI RABI1 overlaps RABI2.
RABIcheck(R1,R2) = R1&Rmask(R(R2))

RABI1 shares RAs with RABI2 if and only if:
RABIcheck(RABI1, RABI2) = RABIcheck(RABI2, RABI1)
!Note: This can be ruled out by inspection if the two N11 nibbles di " er

Example:
! RABI2 = 0xF50100000000 = 1111-0 101-0000-0001-0000-0000-0000-0000-0000-0000-0000-0000
! B(RABI2) = 0x300000000000 / 0x100000000000 = 3
! M(RABI2) = 0x070000000000 / 0x100000000000 = 5
! R(RABI2) = 3+5 = 8
! Rmask(8) = 0xF0FF00000000
! RABI1 = 0xF20123400000
! RABI1&Rmask(8) = 0xF00100000000
! RABI2&Rmask(5) = 0xF00100000000
! so RABI1 and RABI2 have RAs in common

Lowest IRA in RABI: RABI & 0xF0FFFFFFFFFF + 0x0E0000000000
Example: 0xFE0123400000)

Lowest GRA in RABI: RABI & 0xF0FFFFFFFFFF + 0x0F0000000000
Example: 0xFF0123400000)

Highest IRA in RABI: RABI & 0xF0FFFFFFFFFF + 0x0E0000000000 + 0x10 **(R(RABI)) Ð 1
Example: 0xFE01234FFFFF)

Highest GRA in RABI: RABI & 0xF0FFFFFFFFFF + 0x0F0000000000 + 0x10 **(R(RABI)) Ð 1
Example: 0xFF01234FFFFF)

&
~

bitwise AND
bitwise NOT

/ divide
== binary equality

N11

N10

1 j k

11 1

kj1 !jk indicates the BABI Size B
!bcd indicates the MABI Size M

i i

*c0 b d

RABI Math 103

!49!

RABI RA

An RA exists in one and only one RABI (called RABIM) of each MABI Size M.
Given the MABI Size M, what is RABIM?

A RABI exists in one and only one aggregated RABI called RABI) of each larger MABI Size.
Given the MABI Size M, what is RABIM?

RABIM(X, Mn) = X&Rmask(Mn+B(X)) + Mn(X)*0x010000000000 [X is an RA, or a RABI with M[X]<Mn]

Example:
! RABI1 = 0xF20123400000 B(RABI1)=3; M(RABI1)=2
! Mn = 5; Mn + B = 8
! RABI1&Rmask(8) = 0xF20123400000&0xF0FF00000000 = 0xF00100000000
! RABIm(RABI1,5) = 0xF00100000000 + 0x050000000000 = 0xF50100000000

Example:
! RA = 0xFE0123456789 [B(RA)=3]
! Mn = 5; Mn + B = 8
! RA&Rmask(8) = 0xFE0123456789&0xF0FF00000000 = 0xF00100000000
! RABIm(RA,8) = 0xF00100000000 + 0x050000000000 = 0xF50100000000

Example:
! RA = 0xFE0123456789 [B(RA)=3]
! Mn = 2; Mn + B = 5
! RA&Rmask(5) = 0xFE0123456789&0xF0FFFFF00000 = 0xF00123400000
! RABIm(RA,5) = 0xF00123400000 + 0x020000000000 = 0xF20123400000

&
~

bitwise AND
bitwise NOT

/ divide
== binary equality

N11

N10

1 j k

11 1

kj1 !jk indicates the BABI Size B
!bcd indicates the MABI Size M

i i

*c0 b d

Temporary Unicast Address (TUA)
¥ For temporary use

¥ device without a source address selects a random temporary unicast address for initial
discovery only

Ð protocol then assigns at least one persistent unicast address

¥ simultaneous duplicate temporary addresses may lead to message loss in some circumstances
Ð network learns route to source as initial message crosses the network
Ð before response is returned, another initial message with duplicate source address

crosses the path and rewrites the route
Ð unlikely to be disastrous
Ð loss of initial message will be corrected eventually

 ¥ nevertheless, need to consider the likelihood of duplication

¥ Temporary address range includes 9 full nibbles of 16 values each (0ÐF)
Ð 169 = 68,719,476,736 (= N) temporary addresses in the pool
Ð chance of no duplicates with k randomly selected addresses is approximated

 exp(Ðk*(kÐ1)/(2*N))
Ð with k=1000 devices simultaneously using a temporary address, chance of

no duplicates is ~0.99988
Ð can add jk bits to the pool if more entropy is needed

!50!

*

*

*

*

*

*

*

*

*

0 0 0

1 1 1 0

0

0

0 00

null CABA (CABA0)

¥ Null CABA (CABA0) is not
an assignable address.

¥ Registrar listens to
CABA0.

¥ No Claimant listens to
CABA0.

¥ Can be used as the DA of
BARC Inquiry; e.g., when
Registrar address is
unknown.

!51!

0

0

0

0

0

0

0

0

0

1 11 1

0 0 0

CABA0

0

0

Proposed RABI (PRABI) and null RABI/PRABI

 52

• Usable only as the content of a
BARC Inquiry or BARC Proposal
message.

• Indicates a set of RABIs
characterized by RABI Option i,
BABI Size B jk, and MABI Size
M bcd.

• If the PRABI has the form of a
RABI (with 0 in the B+M least
significant nibbles), then the
PRABI set is only that RABI.

• Non-zero values in the lower
B+M nibbles can signify that
some bits of the higher nibbles
are “don’t care.”

• For example, the lower B+B
nibbles of the PRABI could form
a bitmask of the higher nibbles.

PRABI proposed RABIs

0
0

0

0

F
0

null RABI/
null PRABI

0

0

0

0

0

0

0

0
0

• As a PRABI in a
BARC Inquiry or
Proposal message,
indicates a set of
RABIs characterized
by RABI Option i, BABI
Size B jk, and MABI
Size M bcd, without
expressing a
preference for the
RABI values of the 0
nibbles.

• As a RABI in a BARC
Offer message,
indicates to Claimant
that no RABI is offered.

0

1 1i1
0 cb c

0

X5
X6

X8
X7

1 1i1

X9
0 00 1

0

X5
X6

X8
X7

1 1i1

X9
1 1 1 *

0F

Proposed RABIs are those that satisfy:
RABI | Pmask = (PRABI&~(0x10**(R(PRABI)) – 1)) | Pmask
where Pmask(PRABI) = 10**(R(PRABI))*PRABI&(0x10**(Rcap) – 1)
and Rcap=min(R(PRABI),10–R(PRABI))

0

F
0

0
F

don’t
care:

Appendix 2
• additional procedural details

 53

 54

BARC Address Propagation with MMRP
The ARC Claimant Application AddABD Process includes “declare with MMRP”. This entails declaring, to MMRP
(when available), MMRP attributes, using an MMRPDU per IEEE Std 802.1Q § 10.12.1.6:
• The multicast address represented by the CABA

FirstValue field = CABA/NumberOfValues=1
• The unicast address subblock indicated by the ABD (CABA or RABI)

FirstValue field = first address in unicast subblock
NumberOfValues = 16Size per ABD Size

• limited to Size up to 3: 163=4096, and MRP provides 13 bits of NumberOfValues (213=8192)
The ARC Claimant Application AddABD Process includes (“select CABA”); this selection should consider any local MMRP
registration database to avoid selecting a registered CABA.

Unicast MMRP declaration can be useful because:
(1) A one-step declaration covers a contiguous range of self-assigned unicast addresses.
(2) Eliminates flooding for all the unicast addresses in the assignment.
(3) Eliminates the need for learning of each unicast address when used.
(4) Precludes erroneous re-learning of an address when a false duplicate is used elsewhere in the network.

• Could be a way to control duplication.
• Security issues to study.

BARC could alternatively specify “BARP,” a new MRP application. This could entail the following changes:

(a) the BARP application would be enabled to Join and Leave with the ABD as the declared attribute
(b) the BARP application would be specified to understand the semantics of the ABD and extract from it the
indicated ABD multicast address and the indicated unicast address set, then use it to populate the FDB
(c) In the BARC Claimant ABD State Machine, the CABA claim [“sBARC(CABA:C)]” might not be needed, since the
a BARP declaration could convey the claim to the CABA as well as the declaration of interest in receiving at
the CABA multicast address

BARP might be better suited to specification within IEEE Std 802.1Q instead of 802.1CQ.

START:
Receive BARC

FYI(status
[,value])

condition

update MMRP

END

!55!

replacement
ABD?

no

go to:
Initiate
Adding

yes

Alert action to
 resolve
duplicate

BARC
Delete()[ABD]

delete

renew

ARC Claimant Application Process:
BARC Management

Expired

Offered action to
 add AB?

go to:
Initiate
Adding

yes

no

ARC Claimant Application Process: Drop Claim

!56!

START:
Initiate

Dropping

ABD Claimant
Delete()[ABD]

AB
or
AR

AR Claimant
Drop()[AR]

AB

AR

END

ARC Claimant Application Process:
MAAP Management

START:
Receive

Outcome(X)
[AR]

END

!57!

replacement
AB or AR?

no

go to:
Initiate
Adding

yes

!58!

BARC Registrar Application: ClaimCheck Process

ClaimCheck
(State,I1,I2)

from
rBARCPDU_in

ENDState

RD
¥ For RABI state machines in Registered State, if any RABIcheck(RABI,I1) then

-sBARC(I1:RC){I2}

Deoccupy()! to RABI
RV

RC

¥ For RABI state machines in RC State, if RABIcheck(RABI,I1) then:
-sBARC(I1:RX){CABA0}
-take action to resolve the identiÞed existing assignment conßict

- if deleting RABI, revoke any of its RABIs in Registered state
else

-Occupied()! to RABI

RX

¥ For RABI state machines in RC State, if RABIcheck(RABI,I1) then:
-take action to resolve the identiÞed existing assignment conßict

- if deleting RABI, revoke any of its RABIs in Registered state

!59!

BARC Registrar Application:
RABI Claiming

select RABI considering:
¥ BARC RABI Registrar States
¥ most recent Outcome content

START:
Initiate

Adding or
Deleting

Try()[RABI]
C

END
result of

Outcome(result)
[RABI]

U,V

Adding

Remove()[RABI]

END

ENDtry again? no

yes

Deleting

START:
Receive BARC
FYI(condition)

condition

Renewed

END

!60!

replacement
RABI?

no

go to:
RABI Claiming/

Initiate
Adding

yes

Alert BARC
Renew()[RABI]!

action to
 resolve
duplicate

BARC
Remove()[RABI]

delete

renew

RABI Claimant Application Process:
BARC Management

	BARC 1
	BARC 2
	BARC 3
	BARC 4
	BARC 5
	BARC 6
	BARC 7
	BARC 8
	BARC 9
	BARC 10
	BARC 11
	BARC 12
	BARC 13
	BARC 14
	BARC 15
	BARC 16
	BARC 17
	BARC 18
	BARC 19
	BARC 20
	BARC 21
	BARC 22
	BARC 23
	BARC 24
	BARC 25
	BARC 26
	BARC 27
	BARC 28
	BARC 29
	BARC 30
	BARC 31
	BARC 32
	BARC 33
	BARC 34
	BARC 35
	BARC 36
	BARC 37
	BARC 38
	BARC 39
	BARC 40
	BARC 41
	BARC 42
	BARC 43
	BARC 44
	BARC 45
	BARC 46
	BARC 47
	BARC 48
	BARC 49
	BARC 50
	BARC 51
	BARC 52
	BARC 53
	BARC 54
	BARC 55
	BARC 56
	BARC 57
	BARC 58
	BARC 59
	BARC 60

