Figures to consider in P802.1CQ/D0.7
Comment Resolution

Roger Marks
EthAirNet Associates; Huawei
2021-09-22
CID20: Model of 64-bit Allocation Use to support 64-bit bridged LAN using 48-bit bridging

- 64-bit network allocation: 8E-11-11-11-11-11-**-**
 - node 64 bit
 - bridge interface 48 bit
 - node 64 bit
 - node 64 bit

- 8E-11-11-11-11-11
 - DA
 - SA
 - type
 - MPDU
 - CRC

- 48-bit prefixes could be suppressed

- 8E-22-22-22-22-22-22-22

- bridge interface 48 bit

- 64-bit network allocation: 8E-22-22-22-22-22-22-/**-**
 - bridge interface 48 bit
 - 64-bit network allocation: 8E-33-33-33-33-33-33-/**-**
 - bridge interface 48 bit

- MPDU includes sufficient information for bridge interface to determine 48-bit DA
- allocated 64-bit addresses are unique across the union of 64-bit networks
- union of all the 64-bit networks works like a bridged LAN
- if MPDU carries a 64-bit destination address per allocation, then DA is first 48 bits
- otherwise, bridge interface may need a 48/64 mapping table

Prior work:
- In a Personal Area Network, there are nodes connected to two IEEE 802 technologies like 802.15.4 with 64-bit MACs and 802.3 with 48-bit MACs, PAN coordinator and intermediate bridges and routers
- This document presents use cases for using 802.1 bridges to adopt 64-bit MACs with 48-bit MACs
- Address Bridging: 64-bit to 48-bit address adaptation work is needed in 802.1
- Local addresses can be used by the bridge during address bridging (both for 64-bit to 48-bit and vice versa)

CID79: Semantic Addressing – Example

- Access bridge ID: A
- Access bridge ID: B
- Semantic prefix
- Semantic extension N
- Access bridge ID
- Port ID
- Virtual machine ID
- Represents the format for identifying addresses.