IEEE P802.1Qdd Resource Allocation Protocol (RAP)

Preview of Draft 0.5

Feng Chen
Siemens AG

IEEE 802.1 Plenary, July 2021
Current Status

- This presentation gives a preview of P802.1/D0.5.
 - The draft D0.5 hasn’t been uploaded at the time of this presentation.
 - Thus the eventual D0.5 may slightly differ from the descriptions in this presentation.

- The draft for D0.5 will be available at around the beginning of August 2021.
 - Announced (with a short introduction to draft) at a TSN call.
 - Proceeding with a Task Group ballot for this draft.
Major Work on D0.5

- Incorporation of resolved ballot comments on D0.4
- Changes and also new text in 99.2 Model of operation
- Some changes in 99.4 RAP attribute and TLV encoding definitions
- Specification of 99.5 RAP Endpoint
 - Primitives for RAP Service Interface (RSI)
 - Procedures for handling attributes on end stations (only for non-redundancy in D0.5)
- Specification of 99.7 RAP Propagator
 - Architecture and variables
 - Procedures for processing/propagating attributes on bridges (only for non-redundancy in D0.5)
 - Resource reservation functions (only abstract functions)
- Specification of 99.8 RAAI (Resource allocation Abstract Interface)
 - Several APIs for filtering/forwarding stream in FDB, and allocating/deallocating queue resources.
Architecture of RAP Propagator

- **Signaling functions**
 - handling of attributes for three signaling types.
 - incl. actions in response to dynamic changes of VLAN configuration, MAC address registration, RA class settings, stream resources, etc.
 - procedures for redundancy not yet included in D0.5 and to be provided in next draft.

- **Resource reservation functions**
 - defined in clause 99 only as a set of abstract functions for use by signaling functions to precheck reservations (in Talker Announce) and to make/unmake reservations (in Listen Attach).
 - detailed algorithms for latency calculation and resource allocation are to be specified in each RA class template for a specific transmission function.
Signaling Process on a Bridge (Single-context)

Talker Announce process

1. **LRP-DT** → **Ingress processing** → **Local/neighbor RA class info** → **Merge**
2. **LRP-DS** → **Propagator** → **VLAN contexts / DA Pruning** → **Merge**
3. **RAP Propagator** → **Egress processing** → **Talker Announce registration Ports** → **Merge**
4. **RAP Participant** → **Registration** → **Resource conditions (Latency, bandwidth, buffer)** → **Merge**

Listener Attach process

1. **LRP-DT** → **Transmission** → **Portal**
2. **LRP-DS** → **Portal**
3. **RAP Participant** → **Declaration** → **Portal**
Major Work Items for Next Draft (D0.6)

- Stream reservation for .1CB seamless redundancy
 - assumption of VLAN configurations for redundant trees/paths.
 - illustrative examples for use of RAP in E2E and network redundancy.
 - multiple-context signaling procedures:
 - augmented single-context signaling to handle VLAN context splitting and merging in Talker Announce on CB end stations and bridges.
 - dealing with merging of accumulated latencies conveyed along redundant paths.
 - triggering local CB configuration based on stream information, reservation status and managed objects.
 - behavior of non-CB bridges located on redundant paths in response to multiple-context signaling.

- RA class Templates
 - starting with ATS and SP in D0.6.
 - More can be added, such as CQF, TAS, CBS depending on contributions.
Thank you