

Quantitative Performance Comparison of Various Individual and Combined Traffic Shapers in Time-Sensitive Networking

Luxi Zhao
Paul Pop
Sebastian Steinhorst

Necessity and Contributions

Necessity

Set of substandards (flow control):

802.1Qbv – Time Aware Shaper (TAS); 802.1Qav – Credit Based Shaper (CBS); 802.1Qcr – Asynchronous Traffic Shaper (ATS); 802.1Q – 2005 – Strict Priority (SP); Combinations ...

Independent studies;
 No quantitative comparison;
 Proper shapers selection – tricky

TSN Standardization, Sec. III Flow Concept, Flow Synchronization, Flow Management, Flow Control, Flow Integrity, Sec. III-B Sec. III-D Sec. III-A Sec. III-C Sec. III-E TSN Data-Link Flow YANG Models Credit Based Shaping Frame Replication and Network Timing Flow Characterization IEEE 802.1AS [40] IEEE 802.1Qcp [41] IEEE 802.1Qav [45] Elimination Flow Identification Stream Reservation Frame Scheduler IEEE 802.1CB [51] IEEE 802.1Qat [42] IEEE 802.1Qbv 46 Path Control IEEE 802.10cc 43 Frame Preemption IEEE 802.1Qca [52] Link-Local Reservation IEEE 802.3br [47] Per-Stream Filtering IEEE 802.1CS [44] IEEE 802.1Qbu [48] IEEE 802.1Qci [53] Cyclic Queuing IEEE 802.1Qch [49] Asynchronous Shaping IEEE 802.1Qcr [50]

Contributions

- Tutorial of NC-based analysis for TSN;
- Two new combined architectures (TAS+ATS+CBS, TAS+ATS+SP); extend NC approach;
- Plenty of quantitative comparison → surprising but interesting results;
- Provide a basis, select the suitable TSN traffic shapers.

Architecture – Individual Traffic Shapers

- ► IEEE 802.1Qbv Time Aware Shaper (TAS);
- ► Global network clock synchronization (IEEE 802.1ASrev);
- Time-Triggered communication GCL synthesis Schedulability guarantee;
- ► GCL synthesis NP-complete problem [1], [2].

Individual Traffic Shapers

Evaluation Parameters

- Schedulability End-to-end latency bound
- Buffer size without frame loss Backlog bound
- Stable Communication Jitter bound

Architecture – Individual Traffic Shapers

Evaluation Parameters

- Schedulability End-to-end latency bound
- Buffer size without frame loss Backlog bound
- Stable Communication Jitter bound

Architecture – Individual Traffic Shapers

Evaluation Parameters

- Schedulability End-to-end latency bound
- Buffer size without frame loss Backlog bound
- Stable Communication Jitter bound

Т

Evaluation – Individual Traffic Shapers

- Synthetic test cases SRM, MR, MM, ST, MT
 - Each topology 100 TCes;
 - Frame size minimum (64 bytes) ~ maximum (1522 bytes);
 - Period (periodic) / Min time interval (sporadic)- T={1000, 2000, 5000, 10000} (μm);
 - 1 priority;
 - GCLs for TAS, Route existing work [2];
 - Physical link rate 100 Mb/s.

TABLE II STATISTICAL HOPS AND TRAFFIC LOAD FOR 100 TEST CASES

	SRM	MR	MM	ST	MT
Average Hops	2.7	4.2	3.8	3.5	5.5
Average Traffic Load	28.9%	20.5%	17.4%	29.0%	19.7%
Max Traffic Load	47%	40%	38%	47%	30%
Min Traffic Load	13%	8%	6%	13%	10%

Evaluation – Individual Traffic Shapers (1)

Results

- Each TC,
 - 1) End-to-end latency upper bounds flow;
 - 2) Backlog upper bounds egress port;
 - 3) Jitter bounds flow.
- Figure: each TC metric average value; 100 TC 100 dots box plot.

Comments

- Different topologies similar trends while comparing different traffic shapers;
- TAS performs the best latency, backlog, jitter;
- **.**..

Evaluation – Individual Traffic Shapers (1)

Results

Table: X_i metric value for flow f_i ; $\bar{X} = aver(X_i) = aver((X_i^{Y_1} - X_i^{Y_2})/X_i^{Y_2})$

Comments

- latency & jitter SP<CBS<ATS; backlog – CBS<SP<ATS;</p>
- Advantage of ATS ↓ ← concentration of flows ↑← number of hops ↑

•

		(CBS - SP)	(ATS - SP)	(ATS - CBS)
		/SP	/SP	/CBS
Average WCD	SRM	30.7%	34.1%	2.8%
	MR	28.2%	43.9%	12.5%
	MM	26.2%	35.7%	7.7%
	ST	31.2%	72.3%	31.4%
	MT	27.3%	79.1%	40.8%
Average WCB	SRM	-1.3%	38.0%	39.9%
	MR	-2.5%	34.7%	38.1%
	MM	-3.2%	31.0%	35.4%
	ST	-0.8%	65.0%	66.5%
	MT	-3.3%	64.4%	70.0%
Average WCJ	SRM	37.1%	41.4%	3.4%
	MR	38.0%	60.7%	16.6%
	MM	30.3%	43.0%	10.4%
	ST	39.5%	91.9%	37.7%
	MT	37.3%	108.3%	51.9%

Evaluation – Individual Traffic Shapers (1)

Comments

For example

 Flows concentration: MR > MM → ATS positive effect: MR < MM

2. Number of hops: ST > SRM → ATS positive effect: ST < SRM

TABLE II STATISTICAL HOPS AND TRAFFIC LOAD FOR 100 TEST CASES

	SRM	MR	MM	ST	MT
Average Hops	2.7	4.2	3.8	3.5	5.5
Average Traffic Load	28.9%	20.5%	17.4%	29.0%	19.7%
Max Traffic Load	47%	40%	38%	47%	30%
Min Traffic Load	13%	8%	6%	13%	10%

Evaluation – Individual Traffic Shapers (2)

Synthetic test cases – MM

- Case 1 1 priority
- Average traffic load: 10% ~ 90%
- Each traffic load 20 Tces

$$X = aver(X_i) = aver((X_i^{SP} - X_i^{ATS})/X_i^{ATS})$$

- End-to-end latency bounds:
 - Average traffic load ↑ → comparison percentage X ↑ → ATS positive effect 个;
 - Average traffic load < 70% SP performs better than ATS;
- Backlog bounds:
 - Average traffic load < 70% unobvious change;
 - ATS performance is always inferior to SP.

medium mesh

ATS vs. without ATS (i.e., SP)

Average Traffic Load

Average Traffic Load (b)

Figure 2

10 August, 2021

Evaluation – Individual Traffic Shapers (3)

Synthetic test cases – MM

- Case 2 2 priorities + BE
- Average traffic load: 10% ~ 90%; High/low: 50% of overall traffic load
- Each traffic load 20 Tces

medium mesh

Results

$$X = aver(X_i) = aver((X_i^{SP} - X_i^{ATS})/X_i^{ATS})$$

Comments

End-to-end latency bounds:

High priority:

- \approx Top 40% traffic load with single priority;
- ATS no positive effect on high-priority traffic.

Low-priority:

 ATS positive effect on low-priority traffic ← average overall traffic load > 30%.

ATS vs. without ATS (i.e., SP)

P1/P2 5% 10% 15% 20% 25% 30% 35% 40% 45%

10% 20% 30% 40% 50% 60% 70% 80% 90% P1/P2 5% 10% 15% 20% 25% 30% 35% 40% 45%

Average Traffic Load

(b)

Figure 3

Evaluation – Individual Traffic Shapers (3)

Synthetic test cases – MM

- Case 3 2 priorities + BE
- Average traffic load: 10% ~ 90%; High/low: 50% of overall traffic load
- Each traffic load 20 Tces

medium mesh

Results

Comments

Backlog bounds:

High priority:

 $- \approx$ Top 40% traffic load with single priority + BE;

Low-priority:

- ATS positive effect on low-priority traffic.

ATS vs. without ATS (i.e., SP)

P1/P2 5% 10% 15% 20% 25% 30% 35% 40% 45%

10% 20% 30% 40% 50% 60% 70% 80% 90% P1/P2 5% 10% 15% 20% 25% 30% 35% 40% 45%

Average Traffic Load

(b)

Figure 3

Architecture – Combined Traffic Shapers

тип

Evaluation – Combined Traffic Shapers (1)

- Synthetic test cases MM
 - Case 1 TT traffic load: 20%;– SP average traffic load: 10% ~ 70%
 - Each traffic load 20 TCes
- Results
 - $X = aver(X_i) = aver((X_i^{SP} X_i^{ATS+SP})/X_i^{ATS+SP})$
- Comments
 - With the influence of TT traffic (TAS)
 - End-to-end latency bounds:
 - Average traffic load ↑ ATS positive effect ↑;
 - ATS positive effect ← average overall traffic load > 40%;
 - Backlog bounds:
 - ATS positive effect ← average overall traffic load > 30%;

TAS+SP vs. TAS+ATS (+SP) - TT 20%

Average Traffic Load
(a)

Average Traffic Load (b)

Figure 4

Evaluation – Combined Traffic Shapers (2)

Realistic Test Cases – Orion CEV

- 31 ESes, 15 SWs, 188 dataflow routes, 100 Mbps link rate;
- 99 TT flows (TAS), 87 rate constraint flows with the same priority → SP flows / AVB flows (CBS);
- TT traffic load in network
 - \rightarrow 1.5% on average & 5.5% in maximum.

Overall traffic load in network

- → 3.5% on average & 10% in maximum.
- IdleSlope for AVB is set to 75% (default);

Results

- $ightharpoonup 100 \times ln(X), X = (WCD, WCB);$
- Sorted in increasing order by results (WCD, WCB).

Orion CEV

Evaluation – Combined Traffic Shapers (2)

Comments

- End-to-end latency bounds:ATS no positive effect.
- Backlog bounds:ATS positive effect.
- ► Average overall traffic load (TT, SP/AVB) low;
- → Consistent with results in Fig. 4.

Evaluation – Combined Traffic Shapers (3)

Realistic Test Cases – Orion CEV

Increase traffic load:

TT traffic load in network

→ 15% on average & 54% in maximum.

Overall traffic load in network

- → 25% on average & 69% in maximum.
- 4 priorities, 25 flows of P1, 25 flows of P2, 24 flows of P3, 13 flows of P4;
- IdleSlope \leftarrow actual bandwidth utilization, $idSl_i = operIdleSlope(P_i) \cdot \frac{OperCycleTime}{GateOpenTime}$

Results

- $ightharpoonup 100 \times ln(X), X = (WCD, WCB);$
- Sorted in increasing order by results (WCD, WCB).

Orion CEV

Evaluation – Combined Traffic Shapers (3)

TAS+SP vs. TAS+ATS +SP

Comments

End-to-end latency bounds:Backlog bounds:ATS positive effect.

► ATS positive effect

TAS+ATS+CBS > TAS+ATS+SP

← service capability AVB < SP.

In combination of ATS
 → performance of SP & CBS get closer to each other.

Conclusion

- SP vs. CBS
 - SP is more beneficial to the transmission delay of high-priority traffic, while CBS can specify bandwidth reservation for each priority traffic;
 - Due to the credit controlling by CBS, the long-term rate of AVB traffic arrival is reduced, backlog bounds of AVB traffic are possible lower than SP traffic.
- ATS vs. SP, CBS
 - ATS has limited advantages for high-priority traffic;
 - Only when the average traffic load of high priority traffic exceeds a certain value (around 70% in MM for example), ATS can show its superiority;
 - The positive effect of ATS on low priority traffic is more obvious.
- TAS vs. SP, CBS, ATS
 - TAS implement flow-based TT scheduling, has the highest performance with ultra low latency, jitter and backlog;
 - TAS requires the synthesis of optimized GCLs, to which is difficult to scale to large networks with many flows.
- ► TAS+ATS+X vs. TAS+X
 - Combined use of ATS with TAS will make ATS play a more active role, of which the effect is similar to the reshaping impact of ATS used individually on low priority traffic.
 - TAS will maintain unchanged its advantages of ultra low latency and jitter.

Bibliography

[1] S. S. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner.

Scheduling real-time communication in IEEE 802.1 Qbv time sensitive networks.

In 24th International Conf. on Real-Time Networks and Systems (RTNS), 2016.

[2] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner.

Design optimisation of cyber-physical distributed systems using IEEE time-sensitive networks.

IET Cyber-Physical Systems: Theory & Applications, 1(1), 2016.

[3] J. A. R. De Azua, and M. Boyer.

Complete modelling of AVB in network calculus framework.

In 22nd International Conf. on Real-Time Networks and Systems, 2014.

[4] J. Schmitt, P. Hurley, M. Hollick, and R. Steinmetz.

Per-flow guarantees under class-based priority queueing.

In IEEE Global Telecommunications Conference (GLOBECOM'03), 2003.

[5] J. Specht, and S. Samii.

Urgency-based scheduler for time-sensitive switched ethernet networks.

In 28th Euromicro Conf. on Real-Time Systems (ECRTS), 2016.

[6] J. Y. Le Boudec

A theory of traffic regulators for deterministic networks with application to interleaved regulators.

IEEE/ACM Transactions on Networking, 2018.

[7] L. Zhao, P. Pop, Q. Li, J. Chen, and H. Xiong,

Timing analysis of rate-constrained traffic in TTEthernet using network calculus.

Real-Time Systems, 53(2), 2017.

[8] L. Zhao, P. Pop, Z. Zheng, and Q. Li.

Timing analysis of AVB traffic in TSN networks using network calculus.

In IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2018.

[9] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte, and M. Boyer.

Latency Analysis of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using Network Calculus.

IEEE Transactions on Industrial Electronics, 2020.

Thank you!

