- ¹ Text Proposal for section 6: In-vehicle network topology, 9:
- Traffic Separation and 11: Latency and congestion loss in IEEE
 802.1DG/D1.3
- 4 Amrit Gopal
 5 Ford Motor Company
 6 October 2021
- 7 6. Automotive In-Vehicle Networks
- 8 6.1 Introduction
- 9 6.1.2 In-vehicle network topology considerations

Automotive Network Architecture

Figure: Example of Typical Automotive Network Architecture

10

12 9. Traffic Separation

- 13 9.1 Introduction
- 14 9.1.1 Automotive In-Vehicle Traffic Types
- 15 Data streams are classified into traffic types based on the application they intended for.
- 16 1. Command & Control 1 Time critical and safety-relevant status and control signals.
- 17 2. Command & Control 2 Vehicle status, A/C, seats, infotainment system, etc.
- 18 3. Network Control/Management PTP, LLDP, network configuration, network diagnostics.
- 19 4. Audio Chimes/Alerts, entertainment.
- 20 5. Video Stream 1 Time critical and safety-relevant video. example Sensor fusion (AR,V2V etc.)
- 21 6. Video Stream 2 Camera at low speed, displays, entertainment.
- 22 7. Best Effort Data collection upload, OTA download, vehicle diagnostic.
- 23 9.1.2 1 Automotive In-Vehicle Traffic Priority
- 24 The following table maps traffic types to traffic classes.
- 25

РСР	Traffic Class	Traffic type	Attributes
7	TC 8	Command & Control 1	Size: 64 – 512 bytes Periodicity: 1 – 20ms
6	TC 7	Reserved for future use	N/A
5	TC 6	Video Stream 1	Size: 64 – 1518 bytes
4	TC 5	Command & Control 2	Size: 64–1518 bytes Periodicity: 21–500ms
3	TC 4	Network Control/Management	Size: 64 – 500 bytes
2	TC 3	Reserved for future use	N/A
1	TC 2	Video Stream 2	Size: 64 – 1518 bytes
0	TC 1	Best Effort	Size: 64 – 1518 bytes

26

Table: Traffic Class

27 11. Latency and congestion loss

28 11.1 Introduction

- 29 11.1.1 Latency
- 30 Latency is measured as time taken from first bit out to last bit in with a maximum of 3 hops.
- 31 Latency requirement is the time within which an Ethernet frame is required to be received.
- 32 This is not application to application latency. This is MAC (source) to MAC (destination) latency.
- 33 11.1.2 Criticality
- 34 Application criticality -
- 1. High: Critical system malfunction may occur if packet is lost or delayed.
- 36 2. Medium: Degraded operation may occur if packet is lost or delayed.
- Low: Packet loss can be compensated by retransmission; delayed packets will not cause major
 loss in functionality.
- 39 11.1.3 Loss Tolerance -
- 40 Tolerance to consecutive packet loss -
- 41 None: 0 frame loss
- 42 Few: TBD
- 43 Some: TBD
- 44 11.1.4 Traffic class latency requirements
- 45 The following table defines latency requirement for each traffic class.
- 46

Traffic Class	Traffic type	Latency requirement	Criticality	Loss Tolerance
TC 8	Command & Control 1	1ms	High	None
TC 7	Reserved for future use	N/A	N/A	N/A
TC 6	Video Stream 1	16ms	High	Few
TC 5	Command & Control 2	100ms	Medium	Few
TC 4	Network Control/Management	100ms	Medium	Few
TC 3	Reserved for future use	N/A	N/A	N/A
TC 2	Video Stream 2	33ms	Low	Some
TC 1	Best Effort	2000ms	Low	Some

Table: Latency requirement for each traffic class.