Summary of Aerospace Traffic Types

Abdul Jabbar GE Research

TSN profile for aerospace

Complete list of data flows by function and their characteristics <u>https://www.ieee802.org/1/files/public/docs2021/dp-Jabbar-et-all-Aerospace-</u> <u>Traffic-Characterization-0421-v02.pdf</u>

This presentation gives a summary of the above document:

Traffic Types Documentation

Characteristic	Description				
	Traffic types comprise data streams that can either be				
	Periodic: transmitted in a cyclic/periodic (e.g. signal transmission) or				
Periodicity	Aperiodic: transmitted in a acyclic/sporadic (e.g. event-driven) manner				
	Period denotes the planned data transmission interval (often also called "cycle") at the application layer.				
	#: Specify period for cyclic traffic				
Typical Period	N/A: for aperiod/acyclic traffic				
Application Synchronized to Network	Is the application producing traffic type synchronized to the network time at the application layer? YES or NO				
	Packet(s) are delivered to all receivers:				
	Deadline: before a specified time, relative to cycle time. (applies to periodic data)				
	Latency: within a predictable timespan from the start of the transmission				
	Bandwidth: if bandwidth utilization is within in the resources reserved by the sender				
Data Delivery Guarantee Mode	None: no special delivery requirements				
	#: Typical quantification of the data delivery guarantee for 80% of the use cases				
Delivery Guarantee Value	If "deadline" mode is used, specify if the data will be delivered in the same period or not				
	application's tolerance of a certain amount of latency variation of the packet's transmission (a.k.a Jitter)				
	yes: application can tolerate jitter as specified (always yes for "Bandwidth" and "none" delivery modes)				
Application Tolerant to Jitter	no : highly sensitive application requires negligible jitter				
	#: Value of acceptable jitter for periodic applications				
	NEG: Jitter must be negligible				
Tolerable Jitter Value	N/A: if data delivery guarantee mode is "bandwidth" or "none"				
	Application's tolerance to a certain amount of consecutive packet loss				
	Yes: app can tolerate loss due to recovery mechanism in upper layer protocols or basic redundancy				
Applications Tolerant to packet loss	No: app cannot tolerate a single packet loss				
	#: Num of consecutive packet loss tolerable to app.				
Tolerable packet loss Value	0: if application is not tolerant to packet loss				
	fixed: application payload size remain fixed				
Application payload size variability	variable: app payload varies from one packet to packet				
Payload Value (Bytes)	#: size/range of application data (payload) to be transmitted in the Ethernet frames.				
	Criticality of this data for operation of the critical parts of the system				
	high: highly critical for the operation. (DAL A, B)				
	medium: relevant but not continuously needed for the operation (Dal C, D)				
Data Criticality	low: not relevant for operation (DAL E)				

Representative Aerospace Data Flows based on Function

- 1. File Transfers Mission Loading, Video Transfer, Image Transfer, Nav/Map data
- 2. Asynchronous Parametric Data sensors, displays,
- 3. Synchronous Parametric Data closed loop control and Inertial
- 4. Command and Control Weapons release authorization, commands
- 5. Audio Streaming Cockpit audio, cabin PA,
- 6. Video Streaming Uncompressed real-time video (ARINC818), compressed video streams
- 7. Maintenance and Health Monitoring fault reporting, testing
- 8. Fiber Channel over TSN (FCoT) HS1760 (weapons systems), and other FC based applications
- 9. Extremely High BW Source raw Radar data
- 10. Raw IQ data and Raw Plot data

Summary of Traffic Types

Traffic Characteristic	Current Use		Known/Desired future use	Use case driving the Bound
	Left Bound	Right Bound	Bound	
Synchronicity	Synchronous	Asynchronous		
Periodicity/Cycle Time	5 msec	Aperiodic	1 msec	Flight critical controls
Delivery Guarantee Mode	Deadline, Latency,	Bandwidth		
Latency Mode Reqs	1 msec	150 msec	100 usec	Weapons Control Legacy buses over TSN
Tolerance to interference (delay variation/jitter)	< 1 usec	Up to latency limit		Fly-by-wire, synchronous sensors
Tolerance to Loss*	none	10 consecutive frames		Flight controls, weapons release
Payload size (Bytes)	8	2112		Fiber Channel over TSN

*All aerospace systems are robust to losses and failures. Indicates desirable behavior

Takeaway

- Two categories of traffic Ethernet (ARINC664, COTS) based and Non-Ethernet (ARINC 429, FC, 1553, FireWire) based
- Current Ethernet (ARINC664) based systems:
 - Asynchronous with 50 msec or higher cycle time
 - Latency bounded with acceptable delay variation (jitter) up to latency bound
- Current non-Ethernet based systems:
 - Partitioned/Segmented subsystems
 - Synchronous and Asynchronous with 1 msec or higher cycle time
 - Sensitive to both Latency/deadline and delay variation (jitter) require determinism
- Future TSN-based systems:
 - Need to address requirements of both Ethernet and non-Ethernet systems
 - Potential evolving use cases with sub-millisecond latency bounds (100 usec or lower)
- Systems are designed to be inherently tolerant to network frame loss. But eliminating congestion loss remains an objective.

Thank You!

