

IEEE P802.1DP Features | September 2021

End System Traffic Shaping for P802.1DP

Abdul Jabbar GE Research

Further discussion on TSN Profile Features

Recap: Two Profile Approach

Asynchronous Profile

targets current Ethernet based use cases

- Asynchronous with slower cycle times (> 50 msec)
- Latency bounded with acceptable delay variation (jitter) up to latency bound
- Comfortable with rate constrained shaping
- Controlled network no undefined traffic on the network
- Highly static designed, analyzed, configured well ahead of operation
- Certification burden is significant simplicity is valuable

Asynchronous profile to provide an equivalent solution

Synchronous Profile

targets current non-Ethernet and future use cases

- Segmented/partitioned subsystems
- Synchronous with cycle times in the order of 1 msec. Future use cases with sub-millisecond cycle times
- Sensitive to latency (or deadline) and delay variation (jitter)
- Convergence of mixed critical traffic
- Interoperability of legacy buses on top TSN backbone
- Platform wide clock time distribution
- Potential for dynamic (re)configuration

Synchronous profile to provide an ethernet based converged system

• Example of VL1 with BAG of 64 milliseconds and VL2 with BAG of 128 milliseconds

Reference: ARINC 664p7 Traffic Shaping Features by Brent Nelson

https://www.ieee802.org/1/files/public/docs2021/dp-Nelson-A664p7-Traffic-Shaping-0721-v01.pdf

• Example of VL1 with BAG of 64 milliseconds and VL2 with BAG of 128 milliseconds

IEEE P802.1DP Features | September 2021

Figure L-1—Credit-based shaper operation—no conflicting traffic

• Example of VL1 with BAG of 64 milliseconds and VL2 with BAG of 128 milliseconds

IEEE P802.1DP Features | September 2021

Figure L-3—Credit-based shaper operation—burst traffic

single subVL SubVL frames are pulled in round robin fashion in to the VL

Figure 34-1—Queuing model for a Talker station

ARINC 664 End System Traffic Shaping

Proposed P802.1DP Asynchronous Profile Shaping

Transmission Port

Discussion

- Is Qav an appropriate replacement for current aerospace shaping solutions?
- Is Qav only needed on end stations?
- What about mixed traffic scenarios?

Notes from Meeting:

Large end systems have 64-256 transmit Virtual Links (VL) \rightarrow maps to 256 TSN streams

Each VL may have up to 4 sub VLs.

Need to understand if Qav end systems can support up to 265*4 streams

Requesting contributions from the group