60802 Time Sync Ad Hoc 24th October Meeting

David McCall – Intel Corporation

Version 1

60802 Time Sync Ad Hoc – Next Steps

Key: Can progress now Contribution required Dependant on other items

- Messaging & Algorithms
 - Align pDelay & Sync messaging; reduce variability of T_{pdelay2pdelay} & T_{sync2sync} investigation of possible mechanism
 - Contributions requested
 - NRR & RR drift measurement & compensation Monte Carlo & Time Series simulations to determine efficacy and robustness
- Clock Filters & Control Loops
 - Continued discussion based on latest Time Series simulation results
- Sync Message Timestamping (using synced ClockSlave to timestamp)
 - Assessment (simulations?) based on results of Clock Filters & Control Loops discussion.
- Rate Ratio Measurement (best method via NRR accumulation or direct via Sync messaging)
 - Analysis of Rate Ratio measurement via Sync messaging, similar to [2]. Subsequent Monte Carlo simulation and assessment.
- Normative vs. Informative
 - **Discussion** on normative requirements for error generation
 - Possible discussion of normative requirements for error tolerance if NRR and/or RR drift measurement & compensation is adopted.
 - Everything else is informative. Some will be obvious. Others may require discussion.
- Unified Proposal
 - Dependant on progress of above subject areas.

Messaging & Algorithms

- Analysis and Monte Carlo simulations progressing.
 - Best way to calculate mNRR values using past pDelayResp timestamps
 - Measuring NRR drift rate
 - Measuring RR drift rate (more complicated)
- Will be ready to present on Friday; hope to have some contributions posted mid-week

Messaging & Algorithms

- Reducing variability of...
 - T_{pdelay2pdelay}
 - I pdelayTurnaround
 - I residenceTime
 - T_{nrr2sync}
 T_{sync2sync}?
- Initial feedback from Intel engineering is that 1ms accuracy may should be feasible for...
 - T_{pdelay2pdelay}
 - pdelayTurnaround
 - residenceTime
 - T_{sync2sync}
- Alignment of pDelayResp messaging and Sync (T_{nrr2sync})requires new mechanism
 - Discussion?

Normative vs. Informative

- Non-controversial Normative Requirements?
 - syncInterval (target with AS defined variability of T_{sync2sync})
 - pDelayInterval (target with AS defined variability of T_{pdelay2pdelay})
 - pDelayTurnaround (maximum value of T_{pdelayTurnaround})
 - residenceTime (maximum value of T_{pdelayTurnaround})
 - Clock Accuracy (± ppm over a manufacturer defined temp range)
 - Clock Drift (± ppm/s over a manufacturer defined temp range and variability, i.e. ± °C/s)

Possible Additional Normative Requirements

- Limits on variability of...
 - T_{sync2sync}
 - T_{pdelay2pdelay}
 - T_{pdelayTurnaround}
 - T_{ressidenceTime}

• Error added to Correction Field & Rate Ratio field

• Discussion?

Backup

Time Sync Ad Hoc

- Goals
- Timeline
- Subject Areas
- Interim Meeting Agenda

Goals

- Requirement of 1us time sync accuracy over 64 hops
 - Goal of 1us time sync accuracy over 100 hops
 - Worst case, including all errors, at application level (ClockSource, ClockTarget)
- Normative requirements for an IA-station
 - Parameters for interoperability
 - Error generation limits to achieve system-level performance
 - Possibly, error tolerance requirements to achieve system-level performance
 - Will be required if system-level performance is expected to be achieved, to some extent, via reducing the effect of incoming errors
- Informative text for how error generation limits (and error tolerance requirements) can be reasonably met
 - Reasonable cost; existing silicon.

Timeline

 Goal is to have complete contribution text ready for review during 802 Plenary in November

Subject Areas

- 1. Messaging & Algorithms
- 2. Clock Filters & Control Loops
- 3. Sync Message Timestamping
- 4. Rate Ratio Measurement
- 5. Normative vs. Informative
- 6. Unified Proposal

1. Messaging & Algorithms

- Best settings for the various parameters
 - pDelay Interval, Sync Interval, etc...
- How to model errors, including frequency offset
 - Temperature curves, etc...
- Algorithmic compensation for errors
 - Using older pDelayResp timestamp information
 - Aligning pDelayResp with Sync
 - Clockdrift measurement and compensation (NRR & RR)
- Summary: how good is the information a device gets from the time sync messaging?
 - GM and Local Clock; not ClockSource, ClockTarget, ClockMaster, ClockSlave

2. Clock Filters & Control Loops

- Clock Source, Clock Master, Clock Slave & Clock Target filtering and control loops.
- Summary: how well does the accuracy at the messaging level translate to accuracy at the application level?

3. Sync Message Timestamping

- Is it better to use a synchronised ClockSlave for message timestamping?
 - 802.1AS relies on syntonisation, i.e. precisely measuring the difference in frequencies between clocks and compensating for it via RR and NRR
 - Siemens' existing implementation for Working Clock relies on synchronisation and, once synchronised, does not compensate for any (minor) variations in frequency

4. Rate Ratio Measurement

- Is it better to measure Rate Ratio directly from Sync messaging?
 - 802.1AS measures Rate Ratio (RR) via an accumulation of Neighbor Rate Ratio (NRR).
 - Neighbor Rate Ratio is measured via multiple pDelayResp messages.
 - Siemens' existing implementation measures Rate Ratio via multiple Sync messages

5. Normative vs. Informative

- What Normative Requirements are necessary?
 - How should error generation (and possibly error tolerance) be measured?
 - Must be a testable requirement
- What Informative Text should be included?
- Initially will be a conversation about the structure & approach
- Eventually will be about specific text based on the four subject areas above

6. Unified Proposal

- Text for contribution and review during November Plenary
- A lot of the text will come from 5, but probably not all of it