60802 Time Sync Ad Hoc 7th November Meeting

David McCall – Intel Corporation

Version 1

Agenda

- Update on Monte Carlo Simulations
- Agenda for Plenary Session Ad Hoc & 60802 Time Sync Slots

Monte Carlo Simulation Status Update

- Five threads...
 - Add variability of T_{residenceTime} and T_{pDelayTurnaroud}
 - Done see next slide for questions for the group
 - Add mNRRsmoothingA from single-hop simulation to multi-hop simulation
 - Mostly done
 - mNRR Clock Drift tracking & compensation
 - Extension of single-hop simulation
 - mRR Clock Drift tracking & compensation (mRR from accumulation of mNRR)
 - Requires change to Clock Drift modelling see slide 6
 - mRR from successive Sync messages
 - Requires same change to Clock Drift modelling

Variability of T_{residenceTime} and T_{pDelayTurnaroud}

- Previously modelled as residenceTime & pDelayTurnaround, which are technically the maximum permitted interval
- Now modelled with variability factors and uniform distribution...

Parameter	Default	Unit	Notes
pDelayTurnaround	10	ms	
PDTmax	1		Each T _{pDelayTurnaround} is between PDT _{max} and PDT _{min} x pDelayTurnaround
PDTmin	0.2		
residenceTime	10	ms	
RTmax	1		Each T _{residenceTime} is between RT _{max} and RT _{min} x residenceTime
RTmin	0.2		

Variability of T_{pdelay2pdelay} & T_{sync2sync}

Parameter	Default	Unit	Notes
pDelayTurnaround	10	ms	
PDTmax	1		Each T _{pDelayTurnaround} is between PDT _{max} and PDT _{min} x pDelayTurnaround
PDTmin	0.2		
residenceTime	10	ms	
RTmax	1		Each T _{residenceTime} is between RT _{max} and RT _{min} x residenceTime
RTmin	0.2		

• Question for group: are the default limits for $T_{residenceTime}$ and $T_{pDelayTurnaroud}$ reasonable?

Tracking & Compensating for RR Clock Drift

- Similar to End Station Error, only modelled at final hop...but...looking back at previous RR values for final hop entails modelling entire chain of messages for that hop.
- Noisy signal, so requires looking further back at older messages...and same optimal combination of N & A as for mNRR measurement applies...all of which need to be modelled.
- Going further back in time means assumption that Clock Drift remains constant is...shakey.
- Same applies for mRR from Sync messages

Revised Model for Clock Drift

- Model for each interval, and...
- Account for sudden changes in rate of change
 - If there is a transition, then model in two parts

60802 Time Sync Ad Hoc – Next Steps

Key:

Can progress now
Contribution required
Dependant on other items

- Messaging & Algorithms
 - Align pDelay & Sync messaging; reduce variability of $T_{pdelay2pdelay}$ & $T_{sync2sync}$ investigation of possible mechanism
 - Contributions requested
 - NRR & RR drift measurement & compensation Monte Carlo & Time Series simulations to determine efficacy and robustness
- Clock Filters & Control Loops
 - Continued discussion based on latest Time Series simulation results
- Sync Message Timestamping (using synced ClockSlave to timestamp)
 - Assessment (simulations?) based on results of Clock Filters & Control Loops discussion.
- Rate Ratio Measurement (best method via NRR accumulation or direct via Sync messaging)
 - Analysis of Rate Ratio measurement via Sync messaging, similar to [2]. Subsequent Monte Carlo simulation and assessment.
- Normative vs. Informative
 - **Discussion** on normative requirements for error generation
 - Possible discussion of normative requirements for error tolerance if NRR and/or RR drift measurement & compensation is adopted.
 - Everything else is informative. Some will be obvious. Others may require discussion.
- Unified Proposal
 - Dependant on progress of above subject areas.

Backup