# intel

#### 60802 Dynamic Time Sync Error – Monte Carlo Analysis Results for Comparison with Time Series Simulations

David McCall (Intel)

March 2022 IEEE 802 - 802.1 TSN - IEEE/IEC 60802

#### Abstract

- Industrial Automation Systems require microsecond-accurate time across long daisychains of devices using IEEE Std. 802.1AS<sup>™</sup>-2020 as specified by IEEE/IEC 60802.
- Simulated protocol and system parameters have thus far either been judged impractical or have failed to meet the time-accuracy requirement.
- An analysis of how errors accumulate suggested that a Monte Carlo method analysis could support fast iteration of potential scenarios and deliver insights into cause and effect. See...
  - <u>60802-McCall-et-al-Time-Sync-Error-Model-0921-v03.pdf</u>
  - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-2021-11-v02.pdf</u>
  - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0222-v03.pdf</u>
  - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0322-v01.pdf</u>
- In this contribution:
  - Present Monte Carlo analysis results to compare with upcoming Time Series simulation results

#### Content

- Addition of Error due to Clock Drift during Sync Messaging to Error Breakdown Charts
- Summary of Cases
- Summary of Results
  - Including contribution from different error factors
- Backup Detailed Results
  - Graphs from Monte Carlo Analysis

# Error Breakdown Charts



| Input Errors                   |      |        |  |  |  |  |
|--------------------------------|------|--------|--|--|--|--|
| GM Clock Drift Max             | +1.5 | ppm/s  |  |  |  |  |
| GM Clock Drift Min             | -1.5 | ppm/s  |  |  |  |  |
| Clock Drift Max (non-GM)       | +1.5 | ppm/s  |  |  |  |  |
| Clock Drift Min (non-GM)       | -1.5 | ppm/s  |  |  |  |  |
| Timestamp Granularity TX       | 4    | ±ns    |  |  |  |  |
| Timestamp Granularity RX       | 4    | ±ns    |  |  |  |  |
| Dynamic Time Stamp Error TX    | 4    | ±ns    |  |  |  |  |
| Dynamic Time Stamp Error RX    | 4    | ±ns    |  |  |  |  |
| Input Parameters               |      |        |  |  |  |  |
| pDelay Interval                | 250  | ms     |  |  |  |  |
| Sync Interval                  | 125  | ms     |  |  |  |  |
| pDelay Response Time           | 10   | ms     |  |  |  |  |
| residenceTime                  | 10   | ms     |  |  |  |  |
| Input Correction Factors       |      |        |  |  |  |  |
| Mean Link Delay Averaging      | 0    | %      |  |  |  |  |
| NRR Drift Rate Correction      | 0    | %      |  |  |  |  |
| RR Drift Rate Error Correction | 0    | %      |  |  |  |  |
| pDelayResponse → Sync          | 0    | %      |  |  |  |  |
| mNRR Smoothing N               | 1    |        |  |  |  |  |
| mNRR Smoothing M               | 1    |        |  |  |  |  |
| Configuration                  |      |        |  |  |  |  |
| Hops                           | :    | 100    |  |  |  |  |
| Runs                           | 1,00 | 00,000 |  |  |  |  |

# Summary of Cases

# Proposed Time Series Simulations – Details

|            |                                                                                                           | Errors                                                                                                                                           |                                  | Parameter                              |                            | Correction Factors        |                                      |                                 |                              |
|------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------|----------------------------|---------------------------|--------------------------------------|---------------------------------|------------------------------|
| Experiment | Reason                                                                                                    | Clock Drift Model<br>– 40°C ↔ +85°C<br>Hold for 1min at Each<br>(Each node's position in<br>cycle distributed at random<br>across 100% of Cycle) | Timestamp<br>Granularity<br>(ns) | Dynamic<br>Timestamp<br>Error<br>(±ns) | pDelay<br>Interval<br>(ms) | Residence<br>Time<br>(ms) | pDelay<br>Turnaround<br>Time<br>(ms) | Mean Link<br>Delay<br>Averaging | mNRR<br>Smooting<br>Factor N |
| A          | Baseline with previous assumptions                                                                        |                                                                                                                                                  | 8                                | 8                                      | 31.25                      | 1                         | 1                                    | Off                             | 1                            |
| В          |                                                                                                           |                                                                                                                                                  | 8                                | 4                                      | 1000                       | 10                        | 10                                   |                                 |                              |
| С          | verify optimised                                                                                          | Ramp Rate 1°C / s                                                                                                                                |                                  |                                        | 250                        | 10                        | 10                                   |                                 |                              |
| D          | pbelayinterval                                                                                            | (Cycle of 310 s)                                                                                                                                 |                                  |                                        | 31.25                      | 10                        | 10                                   |                                 |                              |
| E          | Verify effect of reduced<br>Timestamp Error (reduced<br>DTE when pDelay Interval<br>is low, i.e. 31.25ms) |                                                                                                                                                  |                                  | 2                                      | 31.25                      | 10                        | 10                                   |                                 |                              |
| F          | Verify effect of reduced<br>Clock Drift (reduced DTE<br>when pDelay Interval is<br>high, i.e. 1000ms)     | Ramp Rate 0.5°C / s<br>Cycle of 560s                                                                                                             | 8                                | 4                                      | 1000                       | 10                        | 10                                   |                                 |                              |

Timestamp Granularity and Dynamic Timestamp Error are uniform distributions unless otherwise stated

Sync Interval: 125ms pDelay Interval variation is +0-30% with uniform distribution

Sync Interval variation is ±10% with 90% probability with gamma distribution

Note: 8ns Timestamp Granularity in Time Series Simulation is equivalent to ±4ns Timestamp Granularity Error in Monte Carlo Analysis

1°C / s temperature ramp rate is the equivalent of ±1.5 ppm/s clock drift rate in Monte Carlo Analysis

No difference between base (PHY related) propagation delay for pDelay and Sync messages

# Number of Sync Messages



# Summary of Results

# Summary of Results - $7\sigma$ Charts



# Comparison with Time Series Simulation

See 60802-garner-mult-replic-time-series-simul-resutls-for-comparison-with-monte-carlo-simuls-0322-v01.pdf

| Case | Reason                                      | Key Factor                                                                                        | 7σ DTE | max   DTE | Time Series max   DTE   Filtered        | Time Series max   DTE   Unfiltered |  |
|------|---------------------------------------------|---------------------------------------------------------------------------------------------------|--------|-----------|-----------------------------------------|------------------------------------|--|
| A    | Baseline with previous assumptions          | pDelayInterval 31.25ms;<br>1ms Residence Time &<br>pDelay Turnaround; 8ns<br>Dyn. Timestamp Error | 1460   | 986       | 1888                                    | 2515                               |  |
| В    |                                             | pDelay Interval 1000ms                                                                            | 19400  | 12800     | 15939<br>(9989 max Confidence Interval) | Odd Data                           |  |
| С    | Verify optimised<br>pDelayInterval          | pDelay Interval 250ms                                                                             | 6420   | 3980      | Not Run                                 | Not Run                            |  |
| D    |                                             | pDelay Interval 31.25ms                                                                           | 8210   | 5850      | 6407                                    | 7089                               |  |
| E    | Verify effect of reduced<br>Timestamp Error | Timestamp Errors halved<br>pDelay Interval 31.25ms                                                | 4990   | 3290      | 3558                                    | 3845                               |  |
| F    | Verify effect of reduced<br>Clock Drift     | Clock Drift halved<br>pDelay Interval 1000ms                                                      | 9720   | 6460      | 13086<br>(5240 max Confidence Interval) | Odd Data                           |  |

#### Thank you!

# Backup Material

**Detailed Results** 

Case A – Baseline





#### Case A – Baseline









#### Case A – Baseline











































































































