intel

60802 Dynamic Time Sync Error – Monte Carlo Analysis Results for Comparison with Time Series Simulations

David McCall (Intel)

March 2022 IEEE 802 - 802.1 TSN - IEEE/IEC 60802

Abstract

- Industrial Automation Systems require microsecond-accurate time across long daisychains of devices using IEEE Std. 802.1AS[™]-2020 as specified by IEEE/IEC 60802.
- Simulated protocol and system parameters have thus far either been judged impractical or have failed to meet the time-accuracy requirement.
- An analysis of how errors accumulate suggested that a Monte Carlo method analysis could support fast iteration of potential scenarios and deliver insights into cause and effect. See...
 - <u>60802-McCall-et-al-Time-Sync-Error-Model-0921-v03.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-2021-11-v02.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0222-v03.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0322-v01.pdf</u>
- In this contribution:
 - Present Monte Carlo analysis results to compare with upcoming Time Series simulation results

Content

- Addition of Error due to Clock Drift during Sync Messaging to Error Breakdown Charts
- Summary of Cases
- Summary of Results
 - Including contribution from different error factors
- Backup Detailed Results
 - Graphs from Monte Carlo Analysis

Error Breakdown Charts

			Input Errors					
2427 ns						GM Clock Drift Max	+1.5	ppm/s
						GM Clock Drift Min	-1.5	ppm/s
						GM Nodes w/ Clock Drift	80%	
		· · · · ·				Clock Drift Max (non-GM)	+1.5	ppm/s
					Clock Drift Min (non-GM)	-1.5	ppm/s	
MLD		RT			ES	Non-GM Nodes w/ Clock Drift	80%	
						Timestamp Granularity TX	4	±ns
						Timestamp Granularity RX	4	±ns
						Dynamic Time Stamp Error TX	8	±ns
TS m	IRR TS				φ .	Dynamic Time Stamp Error RX	8	±ns
						Input Parame	ters	
						pDelay Interval	31.25	ms
				CD		Sync Interval	125	ms
TS	CD TS					pDelay Turnaround Time	1	ms
						residenceTime	1	ms
						Input Correction	Factors	
						Mean Link Delay Averaging	0	%
TS	CD TS			CD		NRR Drift Rate Correction	0	%
						RR Drift Rate Error Correction	0	%
						pDelayResponse → Sync	0	%
						mNRR Smoothing N	1	
						mNRR Smoothing M	1	
				Configuratio	on			
						Hops		100
						Runs	10	0,000

Summary of Cases

Proposed Time Series Simulations – Details

		Err		Parame	Correction Factors					
Experiment	Reason	Clock Drift Model – 40°C ↔ +85°C Hold for 1min at Each (Each node's position in cycle distributed at random across 100% of Cycle)	Timestamp Granularity (ns)	Dynamic Timestamp Error (±ns)	pDelay Interval (ms)	Residence Time (ms)	pDelay Turnaround Time (ms)	Mean Link Delay Averaging	mNRR Smooting Factor N	
A	Baseline with previous assumptions		8	8	31.25	1	1			
В			8	4	1000	10	10		1	
С	verify optimised	Ramn Rate 1°C / s			250	10	10	_		
D	pbelayinterval	(Cycle of 310 s)			31.25	10	10			
E	Verify effect of reduced Timestamp Error (reduced DTE when pDelay Interval is low, i.e. 31.25ms)		4	2	31.25	10	10	Off		
F	Verify effect of reduced Clock Drift (reduced DTE when pDelay Interval is high, i.e. 1000ms)	Ramp Rate 0.5°C / s Cycle of 560s	8	4	1000	10	10			

Timestamp Granularity and Dynamic Timestamp Error are uniform distributions unless otherwise stated

Sync Interval: 125ms pDelay Interval variation is +0-30% with uniform distribution

Sync Interval variation is ±10% with 90% probability with gamma distribution

Note: 8ns Timestamp Granularity in Time Series Simulation is equivalent to ±4ns Timestamp Granularity Error in Monte Carlo Analysis

1°C / s temperature ramp rate is the equivalent of ±1.5 ppm/s clock drift rate in Monte Carlo Analysis

No difference between base (PHY related) propagation delay for pDelay and Sync messages

Number of Sync Messages

Summary of Results

Generating Results to Match Time Series

- For each Case: 7,440,000 Runs
 - Same number of Sync messages as 300 Time Series Replications
- Divide into 300 sections, each of 24,800 Runs
 - Same number of Sync messages as 1 Time Series Replication
 - Nothing special; just take 1st 24,800 runs, then 2nd, then 3rd, etc...
- Find max | DTE | for each section (i.e. 300 instances of max | DTE |)
- Find 99% confidence interval for the 0.95 quantile
 - Order the list of max | DTE | instances, lowest to highest, then...
 - Lower Confidence Limit: 275th Value
 - Point Estimate: 285th Value
 - Upper Confidence Interval: 294th Value

Summary of Results - MAXabs Charts

Summary of Results - MAXabs Charts

Case	Reason	Key Factor	max DTE	
A	Baseline with previous assumptions	pDelayInterval 31.25ms; 1ms Residence Time & pDelay Turnaround; 8ns Dyn. Timestamp Error	2,941	
В		pDelay Interval 1000ms	15,566	
С	Verify optimised pDelayInterval	pDelay Interval 250ms	4,609	
D	-	pDelay Interval 31.25ms	6,915	
E	Verify effect of reduced Timestamp Error	Timestamp Errors halved pDelay Interval 31.25ms	3,996	
F	Verify effect of reduced Clock Drift	Clock Drift halved pDelay Interval 1000ms	7,775	

Comparison with Time Series Simulation

See 60802-garner-mult-replic-time-series-simul-resutls-for-comparison-with-monte-carlo-simuls-0322-v01.pdf

Confidence Intervals & MAX →				Monte Carlo			Time Series – Unfiltered			Time Series – Filtered				
Case	Reason	Key Factor	Lower	Point	Upper	МАХ	Lower	Point	Upper	МАХ	Lower	Point	Upper	МАХ
	A Baseline with previous assumptions	pDelayInterval 31.25ms; 1ms Residence	2.542	2 657	2,774	2,941	2,265	2,315	2,375	2,515	1,624	1,688	1,772	1,887
А		Dynamic Timestamp Error	2,543	2,657			-10.9%	-12.9%	-14.4%	-14.5%				
5	_	pDelay Interval 1000ms	13,621	13,927	14,505	15,566	9,756	11,865	33,242	127,184	9,213	9,478	9,989	15,939
в							-28.4%	-14.8%	129.2%	717.1%				
С	Verify optimised	pDelay Interval 250ms	4,175	4,285	4,498	4,609	Not Run							
D	pDelayintervar	pDelay Interval 31.25ms	6,326	6,469	6,710	6,915	5,894	5,969	6,304	7,089	5,483	5,546	5,800	6,407
D							-6.8%	-7.7%	-6.1%	2.5%				
-	Verify effect of reduced	Timestamp Errors halved	2.622	3,623 3,684	3,915	3,996	3,307	3,366	3,503	3,845	3,024	3,090	3,256	3,578
E	Timestamp Error	pDelay Interval 31.25ms	3,623				-8.7%	-8.6%	-10.5%	-3.8%				
F	Verify effect of reduced	Clock Drift halved	C 91C	C 0.01	7,224	7,775	7,096	11,108	24,077	4,090,674	4,808	4,989	5,240	13,087
F	Clock Drift	pDelay Interval 1000ms	0,810	0,901			4.1%	59.6%	233.3%	52513.2%				

Thank you!

Backup Material

Detailed Results

Case A – Baseline

Case A – Baseline

Case A – Baseline

