intel

60802 Dynamic Time Sync Error – Recommended Parameters & Correction Factors

David McCall (Intel)

March IEEE 802 Plenary – 802.1 TSN – IEC/IEEE 60802

Abstract

- The Monte Carlo Analysis approach to modelling Dynamic Time Error (DTE) across long chains of networked devices was developed to assist the IEC/IEEE 60802 group meet the target of 1us Time Sync Error across 100 hops.
- Previous presentations...
 - <u>60802-McCall-et-al-Time-Sync-Error-Model-0921-v03.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-2021-11-v02.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0222-v03.pdf</u>
 - <u>60802-McCall-Stanton-Time-Sync-Error-Model-and-Analysis-0322-v01.pdf</u>
 - <u>60802-McCall-Time-Sync-Monte-Carlo-Results-for-Time-Series-Comparison-0322-v01.pdf</u>
- In this contribution we:
 - Provide recommended parameters and correction factors to achieve the group's goals along; additional background information; suggested Time Series Simulations to validate the goals; and a suggested approach to normative and informative test for the specification.

Content

- Recommended parameters & correction factors
- Background why these are the recommended settings
- Time Series Simulations to validate recommendations
- Normative & Informative text for the specification
- Proposed Algorithms

Error Breakdown Charts with ES – Example

							Input Error	s	
							GM Clock Drift Max	+1.5	ppm/s
	2427 ns				GM Clock Drift Min	-1.5	ppm/s		
							GM Nodes w/ Clock Drift	80%	
							Clock Drift Max (non-GM)	+1.5	ppm/s
							Clock Drift Min (non-GM)	-1.5	ppm/s
MLD			RT			ES	Non-GM Nodes w/ Clock Drift	80%	
							Timestamp Granularity TX	4	±ns
							Timestamp Granularity RX	4	±ns
							Dynamic Time Stamp Error TX	8	±ns
	NRR TS		RR			φ.	Dynamic Time Stamp Error RX	8	±ns
							Input Parame	ters	
							pDelay Interval	31.25	ms
							Sync Interval	125	ms
	CD TS				CD		pDelay Turnaround Time	1	ms
							residenceTime	1	ms
							Input Correction	Factors	
							Mean Link Delay Averaging	0	%
	CD TS			C	CD		NRR Drift Correction	0	%
							RR Drift Correction	0	%
							pDelayResponse \rightarrow Sync	0	%
-			_	_	-		mNRR Smoothing N	1	
Jsir	זע N	ΛΔΧ	(abs v	alue	s for t	top level and breakdown as several of	mNRR Smoothing M	1	
	. 0						Configuratio	on	
- + I	no d	lictr	ihuti	าทร ว	iro no	t gaussian so 7g doesn't work well	Hops		100
L		IJLI	INMUL	7113 a		L GUNJJIUH JO / O NOCJH L WOIN WEIL	Punc	10	

100.000

Runs

Notes

- Added "Fraction of Nodes with Drift" factor
- In Time Series Simulation temp ramps up...is held stable...ramps down...is held stable.
- % of time stable, i.e. no Clock Drift, is 20%
- This factor matches Monte Carlo more closely to Time Series

Recommended Settings

Input parameters & correction factors

Recommended Settings

Input Errors								
GM Clock Drift Max	+1.5	ppm/s						
GM Clock Drift Min	-1.5	ppm/s						
GM Nodes w/ Clock Drift	80%							
Clock Drift Max (non-GM)	+1.5	ppm/s						
Clock Drift Min (non-GM)	-1.5	ppm/s						
Non-GM Nodes w/ Clock Drift	80%							
Timestamp Granularity TX	4	±ns						
Timestamp Granularity RX	4	±ns						
Dynamic Time Stamp Error TX	4	±ns						
Dynamic Time Stamp Error RX	4	±ns						
Input Parameters	5							
pDelay Interval	125	ms						
Sync Interval	125	ms						
pDelay Turnaround Time	10	ms						
residenceTime	10	ms						
Input Correction Fac	tors							
Mean Link Delay Averaging	98	%						
NRR Drift Correction	90	%						
RR Drift Correction	90	%						
pDelayResponse → Sync	0	%						
mNRR Smoothing N	3							
mNRR Smoothing M	1							
Configuration								
Hops		100						
Runs	10	0,000						

DTE

Background Information

Why these recommended settings?

pDelay Interval 31.25ms

pDelay Interval 62.5ms

pDelay Interval 125ms

Input Errors							
GM Clock Drift Max	+1.5	ppm/s					
GM Clock Drift Min	-1.5	ppm/s					
GM Nodes w/ Clock Drift	80%						
Clock Drift Max (non-GM)	+1.5	ppm/s					
Clock Drift Min (non-GM)	-1.5	ppm/s					
Non-GM Nodes w/ Clock Drift	80%						
Timestamp Granularity TX	4	±ns					
Timestamp Granularity RX	4	±ns					
Dynamic Time Stamp Error TX	4	±ns					
Dynamic Time Stamp Error RX	4	±ns					
Input Parame	eters						
pDelay Interval	125	ms					
Sync Interval	125	ms					
pDelay Turnaround Time	10	ms					
residenceTime	10	ms					
Input Correction	Factors						
Mean Link Delay Averaging	98	%					
NRR Drift Correction	90	%					
RR Drift Correction	90	%					
pDelayResponse $ ightarrow$ Sync	0	%					
mNRR Smoothing N	Variable	1					
mNRR Smoothing M	1						
Configuration							
Hops	-	100					
Runs	10	0,000					

Other pDelay Intervals

- Best maxABS DTE with 250ms pDelayInterval: 533ns (N = 2)
- Best maxABS DTE with 500ms pDelayInterval: 852ns (N = 1)

Time Series Simulations To Validate Recommendation

Time Series Simulations to Validate Recommendation

• Four Simulations

- No Algorithmic Compensation
- NRR Drift Correction
- RR Drift Correction + NRR Drift Correction

Recommended Settings: Mean Link Delay Averaging + RR Drift Correction + NRR Drift Correction

Detail on next slides

No Algorithms

Input Errors							
GM Clock Drift Max	+1.5	ppm/s					
GM Clock Drift Min	-1.5	ppm/s					
GM Nodes w/ Clock Drift	80%						
Clock Drift Max (non-GM)	+1.5	ppm/s					
Clock Drift Min (non-GM)	-1.5	ppm/s					
Non-GM Nodes w/ Clock Drift	80%						
Timestamp Granularity TX	4	±ns					
Timestamp Granularity RX	4	±ns					
Dynamic Time Stamp Error TX	4	±ns					
Dynamic Time Stamp Error RX	4	±ns					
Input Paramete	ers						
pDelay Interval	125	ms					
Sync Interval	125	ms					
pDelay Turnaround Time	10	ms					
residenceTime	10	ms					
Input Correction F	actors						
Mean Link Delay Averaging	0	%					
NRR Drift Correction	0	%					
RR Drift Correction	0	%					
pDelayResponse $ ightarrow$ Sync	0	%					
mNRR Smoothing N	3						
mNRR Smoothing M	1						
Configuration	n						
Hops		100					
Runs	10	0,000					

No Algorithms

NRR Drift Correction

	1674 ns								
MLD			RT					ES	
TS mNI	IRR TS	RR		CD					
TS CC	D TS	mNRR		CD					
TS CC	D TS			CD					

Input Errors							
GM Clock Drift Max	+1.5	ppm/s					
GM Clock Drift Min	-1.5	ppm/s					
GM Nodes w/ Clock Drift	80%						
Clock Drift Max (non-GM)	+1.5	ppm/s					
Clock Drift Min (non-GM)	-1.5	ppm/s					
Non-GM Nodes w/ Clock Drift	80%						
Timestamp Granularity TX	4	±ns					
Timestamp Granularity RX	4	±ns					
Dynamic Time Stamp Error TX	4	±ns					
Dynamic Time Stamp Error RX	4	±ns					
Input Parameters							
pDelay Interval	125	ms					
Sync Interval	125	ms					
pDelay Turnaround Time	10	ms					
residenceTime	10	ms					
Input Correction F	actors						
Mean Link Delay Averaging	0	%					
NRR Drift Correction	90	%					
RR Drift Correction	0	%					
pDelayResponse → Sync	0	%					
mNRR Smoothing N	3						
mNRR Smoothing M	1						
Configuration							
Норѕ	Hops 100						
Runs	10	0,000					

NRR Drift Correction

NRR & RR Drift Correction

Input Errors							
GM Clock Drift Max	+1.5	ppm/s					
GM Clock Drift Min	-1.5	ppm/s					
GM Nodes w/ Clock Drift	80%						
Clock Drift Max (non-GM)	+1.5	ppm/s					
Clock Drift Min (non-GM)	-1.5	ppm/s					
Non-GM Nodes w/ Clock Drift	80%						
Timestamp Granularity TX	4	±ns					
Timestamp Granularity RX	4	±ns					
Dynamic Time Stamp Error TX	4	±ns					
Dynamic Time Stamp Error RX	4	±ns					
Input Parameters							
pDelay Interval	125	ms					
Sync Interval	125	ms					
pDelay Turnaround Time	10	ms					
residenceTime	10	ms					
Input Correction F	actors						
Mean Link Delay Averaging	0	%					
NRR Drift Rate Correction	90	%					
RR Drift Rate Error Correction	90	%					
pDelayResponse → Sync	0	%					
mNRR Smoothing N	3						
mNRR Smoothing M	1						
Configuratio	n						
Норѕ	:	100					
Runs	10	0,000					

NRR & RR Drift Correction

Recommended Settings: MLD Averaging + RR & NRR Drift Correction

478 ns									
ILD		RT				ES			
INRR	T5	RR				СО			
æ	TS				co				
æ	15			со					

Input Errors							
GM Clock Drift Max	+1.5	ppm/s					
GM Clock Drift Min	-1.5	ppm/s					
GM Nodes w/ Clock Drift	80%						
Clock Drift Max (non-GM)	+1.5	ppm/s					
Clock Drift Min (non-GM)	-1.5	ppm/s					
Non-GM Nodes w/ Clock Drift	80%						
Timestamp Granularity TX	4	±ns					
Timestamp Granularity RX	4	±ns					
Dynamic Time Stamp Error TX	4	±ns					
Dynamic Time Stamp Error RX	4	±ns					
Input Parameters							
pDelay Interval	125	ms					
Sync Interval	125	ms					
pDelay Turnaround Time	10	ms					
residenceTime	10	ms					
Input Correction Fac	ctors						
Mean Link Delay Averaging	98	%					
NRR Drift Rate Correction	90	%					
RR Drift Rate Error Correction	90	%					
pDelayResponse → Sync	0	%					
mNRR Smoothing N	3						
mNRR Smoothing M	1						
Configuration							
Hops 100							
Runs	10	0,000					

Recommended Settings: MLD Averaging + RR & NRR Drift Correction

Results to Match 300 Time Series Replications

• For each case:

- 7,440,000 runs divided into 300 sections of 24,800 runs
- For each section, order max | DTE | then find 99% confidence limits for 0.95 quantile
- See slide 9 of 60802-McCall-Time-Sync-Monte-Carlo-Results-for-Time-Series-Comparison-2022-03-v02.pdf for details.
- Results

	DTE (ns)					
	Lower Point Upper MAX					
No Algorithms	3827	3858	3908	4171		
NRR Drift Correction	1553	1573	1608	1628		
RR & NRR Drift Correction	530	534	554	608		
MLD Averaging + RR & NRR Drift Correction	467 477 496 506					

Normative & Informative Text

IEEE 802.1 TSN / 60802 Plenary, March 2022

Normative Text

- Normative requirement on Local Clock drift relative to TAI: 1.5 ppm/s
 - Already in Günter's planned submittion
- Normative requirement on "tolerance" of upstream drift of...
 - Local Clock of upstream node (NRR Drift Compensation)
 - GM (RR Drift Compensation)
- For tolerance...
 - Vary upstream Local Clock or GM with sinusoidal variation
 - ±20ppm with maximum slope of ±1.5ppm/s
 - No more than 10% of DTE error at individual node vs amount of error without algorithmic correction

Informative Text

- Description of algorithms that allow the requirements to be met.
- Based on prior contribution.
- Is this needed for draft 1.4?

Proposed Algorithms

Conventions

- p-1 is back in time
 - mNRR(p) is the most recent mNRR calculation
 - mNRR(p-1) is the mNRR calculation one prior (in time) to the most recent
- n-1 is back up the chain of nodes
 - RR(n) is the RR calculation for the current node's Local Clock (against the GM)
 - RR(n-1) is the RR same calculation for the node one step up the chain
- If n and/or p are omitted the value is the most recent for the current node

Note

- Two sets of equations are presented for NRR and RR Drift Correction
 - "a" assumes RR and NRR are represented as ratios that are multipled together
 - "b" assumes RR and NRR are represented as ppm values and added together
 - This introduces an error, but if ppm values are small (one or two digits) the error is similarly small and can be ignored in many practical applications

NRR Drift Correction – Time Series – 1a Ratio

Correction factor applied to RR to account for clock drift between the Local Clock and the Local Clock (or GM) in the previous node (i.e. NRR) during time between NRR measurement and Sync message

- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing; mNRRsmoothingN = 3
- Calculate Drift Rate (mNRR as Ratio)

$$NRR_{driftRate}(n) = \frac{1}{Time_{effectiveNRRmeasure}(p) - Timeeff_{ectiveNRRmeasure}(p-1)} \times \frac{mNRR(p)}{mNRR(p-1)}$$
ratio/s
$$= \frac{1}{\left(\frac{t_{4pDelayResp}(p) + t_{4DelayResp}(p-3)}{2}\right) - \left(\frac{t_{4DelayResp}(p-1) + t_{4DelayResp}(p-4)}{2}\right)}{2} \times \frac{mNRR(p)}{mNRR(p-1)}$$
ratio/s
$$= \frac{2 \times (mNRR(p))}{mNRR(p-1) \times \left(t_{4DelayResp}(p) - t_{4DelayResp}(p-1) + t_{4DelayResp}(p-3) - t_{4DelayResp}(p-4)\right)}$$
ratio/s

NRR Drift Correction – Time Series – 2a Ratio

Correction factor applied to RR to account for clock drift between the Local Clock and the Local Clock (or GM) in the previous node (i.e. NRR) during time between NRR measurement and Sync message

• Where previously

$$RR(n) = RR(n-1) \times mNRR(n)$$
 ratio

• Now

$$RR(n) = RR(n-1) \times mNRR(p) \times \left(NRR_{driftRate}(n) \cdot \left(t_{1syncOut}(n) - Time_{effectiveNRRmeasure}(p) \right) \right)$$
 ratio

$$= RR(n-1) \times mNRR(p) \times \left(NRR_{driftRate}(n) \cdot \left(t_{1syncOut}(n) - \left(\frac{t_{4pDelayResp}(p) + t_{4DelayResp}(p-3)}{2} \right) \right) \right)$$
ratio

RR Drift Correction – Sync Messaging – Time Series – 1a Ratio

Correction factor applied to Correction Field during processing of Sync message to account for drift between Local Clock & GM during time from GM's transmit of initial Sync message

- Applied during processing of Correction Field at all nodes.
 - Residence Time and Mean Link delay for Bridges; Mean Link Delay only for End Stations.
 - Note: where a device functions as both Bridge and End Station, there are two version of the Correction Field; one for local use (MLD only); one for transmitted Sync messaging (MLD & RT).
- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing (apart from correctionField)
- Calculate Drift Rate

$$RR_{driftRate}(n) = \frac{1}{t_{1syncOut}(p) - t_{1syncOut}(p-1)} \times \frac{RR(p)}{RR(p-1)}$$
 ratio

- t_{1syncOut}(p) is the timestamp for when the current node (n) transmits Sync to the next node in the chain.
- RR(p) is the Rate Ratio calculated when Sync is transmitted

RR Drift Correction – Sync Messaging – Time Series – 2a Ratio

Correction factor applied to Correction Field during processing of Sync message to account for drift between Local Clock & GM during time from GM's transmit of initial Sync message

• Where previously

$$correctionField(n) = correctionField(n - 1) + RR(n) \cdot (residenceTime + meanLinkDelay)$$
 ns

 $correctionField(n) = correctionField(n-1) + RR(n) \cdot RRdriftCorrection \cdot (residenceTime + meanLinkDelay)$ **ns**

$$RR_{driftCorrection} = RR_{driftRate}(n) \times \left(\frac{correctionField(n-1)}{RR(n)} + residenceTime + meanLinkDelay\right) \qquad ppm$$

- correctionField is in terms of GM Clock
- residenceTime is only applied to Correction Field when generating Sync messaging for TX to next node in the chain

RR Drift Correction – ES – Time Series – 1a Ratio

Correction factor applied to applied RR at End Station during time between arrival of Sync messages

- Applied at End Stations between arrival of Sync Messages.
- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing.
- Calculate Drift Rate

$$RR_{driftRate}(n) = \frac{1}{t_{2syncIn}(p) - t_{2syncIn}(p-1)} \times \frac{RR(p)}{RR(p-1)}$$

- t_{2syncln}(p) is the timestamp for when the current node (n) receives Sync to the previous node in the chain.
- RR(p) is the Rate Ratio calculated when Sync is transmitted

ratio

RR Drift Correction – ES – Time Series – 2a Ratio

Correction factor applied to applied RR at End Station during time between arrival of Sync messages

• Where previously...

$$RR_{applied} = RR(n)$$
 Ratio

...and remained constant until next Sync message arrives

• Now...

$$RR_{applied} = RR(n) \cdot RR_{driftRate}(n) \cdot \left(\frac{correctionField(n-1)}{RR(n)} + timeElapsedSinceSync\right)$$

Ratio

...and therefore constantly changing, albeit linearly.

• Application to Time Series will involve quadratic equations

NRR Drift Correction – Time Series – 1b ppm

Correction factor applied to RR to account for clock drift between the Local Clock and the Local Clock (or GM) in the previous node (i.e. NRR) during time between NRR measurement and Sync message

- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing; mNRRsmoothingN = 3
- Calculate Drift Rate (mNRR as Ratio)

$$NRR_{driftRate}(n) = \frac{(mNRR(p) - mNRR(p - 1))}{Time_{effectiveNRRmeasure}(p) - Timeef_{fectiveNRRmeasure}(p - 1)} \qquad ppm/s$$
$$= \frac{(mNRR(p) - mNRR(p - 1))}{\left(\frac{t_{4pDelayResp}(p) + t_{4DelayResp}(p - 3)}{2}\right) - \left(\frac{t_{4DelayResp}(p - 1) + t_{4DelayResp}(p - 4)}{2}\right)} \qquad ppm/s$$
$$= \frac{2 \times (mNRR(p) - mNRR(p - 1))}{\left(t_{4DelayResp}(p) - t_{4DelayResp}(p - 1) + t_{4DelayResp}(p - 3) - t_{4DelayResp}(p - 4))\right)} \qquad ppm/s$$

NRR Drift Correction – Time Series – 2b ppm

Correction factor applied to RR to account for clock drift between the Local Clock and the Local Clock (or GM) in the previous node (i.e. NRR) during time between NRR measurement and Sync message

• Where previously

$$RR(n) = RR(n-1) + mNRR(n)$$
 ppm

• Now

$$RR(n) = RR(n-1) + mNRR(p) + \left(NRR_{driftRate}(n) \cdot \left(t_{1syncOut}(n) - Time_{effectiveNRRmeasure}(p)\right)\right)$$
 ppm

$$= RR(n-1) + mNRR(p) + \left(NRR_{driftRate}(n) \cdot \left(t_{1syncOut}(n) - \left(\frac{t_{4pDelayResp}(p) + t_{4DelayResp}(p-3)}{2}\right)\right)\right) \quad ppm$$

RR Drift Correction – Sync Messaging – Time Series – 1b ppm

Correction factor applied to Correction Field during processing of Sync message to account for drift between Local Clock & GM during time from GM's transmit of initial Sync message

- Applied during processing of Correction Field at all nodes.
 - Residence Time and Mean Link delay for Bridges; Mean Link Delay only for End Stations.
 - Note: where a device functions as both Bridge and End Station, there are two version of the Correction Field; one for local use (MLD only); one for transmitted Sync messaging (MLD & RT).
- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing (apart from correctionField)
- Calculate Drift Rate

$$RR_{driftRate}(n) = \frac{RR(p) - RR(p-1)}{t_{1syncOut}(p) - t_{1syncOut}(p-1)}$$
 ppm

- t_{1syncOut}(p) is the timestamp for when the current node (n) transmits Sync to the next node in the chain.
- RR(p) is the Rate Ratio calculated when Sync is transmitted

RR Drift Correction – Sync Messaging – Time Series – 2b ppm

Correction factor applied to Correction Field during processing of Sync message to account for drift between Local Clock & GM during time from GM's transmit of initial Sync message

• Where previously

$$correctionField(n) = correctionField(n - 1) + \left(1 + \frac{RR(n)}{10^6}\right) \cdot (residenceTime + meanLinkDelay)$$
 ns
• **Now**

$$correctionField(n) = correctionField(n-1) + \left(1 + \frac{RR(n) + RRdr_{iftCorrection}}{10^6}\right) \cdot (residenceTime + meanLinkDelay)$$
ns

$$RR_{driftCorrection} = RR_{driftRate}(n) \times \left(\frac{correctionField(n-1)}{RR(n)} + residenceTime + meanLinkDelay\right) \qquad ppm$$

• correctionField is in terms of GM Clock

RR Drift Correction – ES – Time Series – 1a Ratio

Correction factor applied to applied RR at End Station during time between arrival of Sync messages

- Applied at End Stations between arrival of Sync Messages.
- Assumes clock drifts linearly over the period of interest.
- Calculations based on Local Clock timing.
- Calculate Drift Rate

$$RR_{driftRate}(n) = \frac{RR(p) - RR(p-1)}{t_{2syncIn}(p) - t_{2syncIn}(p-1)}$$
 ppm

- t_{2syncln}(p) is the timestamp for when the current node (n) receives Sync to the previous node in the chain.
- RR(p) is the Rate Ratio calculated when Sync is transmitted

Where previously...

$$RR_{applied} = RR(n)$$
 ppm

...and remained constant until next Sync message arrives

RR Drift Correction – ES – Time Series – 2b ppm

Correction factor applied to applied RR at End Station during time between arrival of Sync messages

• Now...

$$RR_{applied} = RR(n) + RR_{driftRate}(n) \cdot \left(\frac{correctionField(n-1)}{RR(n)} + timeElapsedSinceSync\right)$$
 ppn

...and therefore constantly changing, albeit linearly.

• Application to Time Series will involve quadratic equations

Mean Link Delay Averaging

- Wired connection link delay is very stable
- pDelay measurements can be noisy due to Timestamp Errors
- It should be possible to average out errors over time
 - Low bandwidth IIR filter...but need to be careful about start-up behaviour

Mean Link Delay Averaging – Possible Algorithm

• For *p*th pDelay measurement since initialisation...

 $if \ p \le 1000, F = X$ $if \ p > 1000, F = 1000$ $MeanLinkDelay(p) = \frac{(MeanLinkDelay(p-1) \times (F-1)) + pDelay(X)}{F}$

• So, for example...

$$MeanLinkDelay(100) = \frac{(MeanLinkDelay(99) \times (99)) + pDelay(100)}{100}$$

 $MeanLinkDelay(10500) = \frac{(MeanLinkDelay(10499) \times (999)) + pDelay(10500)}{1000}$

- Reset F if pDelay deviates too much from current MeanLinkDelay?
 - Deviates too much...repeatedly?

Thank You

Time Sync – Errors to Model

All errors in this analysis are caused by either Clock Drift or Timestamp Errors

Time Sync – How Errors Add Up

All errors in this analysis are caused by either Clock Drift or Timestamp Errors