60802 Time Sync Ad Hoc mNRRsmoothing Optimisation Results

David McCall – Intel Corporation

Version 2

Context

- For context see slides in backup, copied from... https://www.ieee802.org/1/files/public/docs2022/60802-McCall-Time-Sync-mNRRsmoothingN-Optimisation-1022-v1.pdf
- This contribution contains results from the Monte Carlo simulation of 1 hop looking only at mNRR_{error}

mNRRsmoothingN & mNRRsmoothingA

- mNRRsmoothingN: calculate using Nth previous pDelayResp message
- mNRRsmoothingA: take an average of A previous calculations
- N & A factors can be combined
- Note: mNRRsmoothingM, taking a median of M previous calculations is not recommended (at least for calculating RR via an accumulation of NRR) as it increases timing inconsistency, which increases systemlevel error.

mNRRsmoothingN & mNRRsmoothingA – Examples $\frac{t_{3(p-7)} t_{3(p-6)} t_{3(p-5)} t_{3(p-4)} t_{3(p-3)} t_{3(p-2)} t_{3(p-1)}}{t_{3(p-1)} t_{3(p-2)} t_{3(p-1)} t_{3(p-1$

				+	+				
		t _{4(p-7)}	t _{4(p-6)}	t _{4(p-5)}	t _{4(p-4)}	t _{4(p-3)}	t _{4(p-2)}	t _{4(p-1)}	t _{4(p)}
Mathad	mNRRsmoothingN = 1 mNRRsmoothingA = 1							p-1 1	р
1	mNRRsmoothingN = 4 mNRRsmoothingA = 1				p-4		4		р
	mNRRsmoothingN = 7 mNRRsmoothingA = 1	p-7			7)			р
								A p-1	р
Method	mNRRsmoothingN = 1 mNRRsmoothingA = 4					E	8 p-2	3 p-1	
2	Average of A, B, C & D				C	p-3	p-2		
				ſ	D p-4 7	p-3			
					р-4		4		р
Method	mNRRsmoothingN = 4 mNRRsmoothingA = 4		E	p-5		6		p-1	
3	Average of A, B, C & D	C	p-6		8		p-2		
		D p-7		10		p-3			

t_{3(p)}

pDelayInterval 31.25ms – 90% NRR Error Correction

Input Errors					
Drift Type (Linear Temp Ramp)	2				
GM Clock Drift Max	+1.35	ppm/s			
GM Clock Drift Min	-1.35	ppm/s			
Fraction of GM nodes w/ Drift	80%				
non-GM Clock Drift Max	+1.35	ppm/s			
non-GM Clock Drift Min	-1.35	ppm/s			
Fraction of non-GM Nodes w/ Drift	80%				
Temp Max	+85.	°C			
Temp Min	-40.	°C			
Temp Ramp Rate	±1	°C/s			
Temp Ramp Period	125	S			
Temp Hold Period	30	S			
GM Scaling Factor	100%				
non-GM Scaling Factor	100%				
Timestamp Granularity TX	±4	ns			
Timestamp Granularity RX	±4	ns			
Dynamic Time Stamp Error TX	±4	ns			
Dynamic Time Stamp Error RX	±4	ns			
Input Parameters					
pDelay Interval	31.25	ms			
Sync Interval	125	ms			
pDelay Turnaround Time	10	ms			
residenceTime	10	ms			
Input Correction Factors					
Mean Link Delay Averaging	0%				
NRR Drift Rate Correction	90%				
RR Drift Rate Error Correction	0%				
pDelayResp → Sync Type (Uniform)	1				
pDelayResp \rightarrow Sync Max	100%				
pDelayResp → Sync Min	0%				
pDelayResp → Sync Target	10	ms			
mNRR Smoothing N	VARIABLE				
mNRR Smoothing M	1				
Configuration					
Hops	1	.00			
Runs	100	0,000			

90% NRR Error Correction chosen so that a larger N is optimal

pDelayInterval 31.25ms – 90% NRR Error Correction

These simulations are only looking at mNRR_{error} (i.e. the yellow section) and elements under it.

Note that the portion of mNRR_{error} due to Timestamp Error (orange) is larger than the portion due to Clock Drift (purple).

- Three methods...
 - **Method 1**: mNRRsmoothingN = 15 mNRRsmoothingA = 1
 - **Method 2**: mNRRsmoothingN = 1 mNRRsmoothingA = 15
 - **Method 3**: mNRRsmoothingN = 8 mNRRsmoothingA = 8
- Note that all require 16 sets of Timestamp error values and 15 sets of error values due to Clock Drift.
 - The simulation generates arrays with the necessary number of rows (e.g. 16, 15, etc...) and as many columns as there are runs (e.g. 1,000,000).

Input Errors					
Drift Type (Linear Temp Ramp)	2				
GM Clock Drift Max	+1.35	ppm/s			
GM Clock Drift Min	-1.35	ppm/s			
Fraction of GM nodes w/ Drift	80%				
non-GM Clock Drift Max	+1.35	ppm/s			
non-GM Clock Drift Min	-1.35	ppm/s			
Fraction of non-GM Nodes w/ Drift	80%				
Temp Max	+85.	°C			
Temp Min	-40.	°C			
Temp Ramp Rate	±1	°C/s			
Temp Ramp Period	125	s			
Temp Hold Period	30	S			
GM Scaling Factor	100%				
non-GM Scaling Factor	100%				
Timestamp Granularity TX	±4	ns			
Timestamp Granularity RX	±4	ns			
Dynamic Time Stamp Error TX	±4	ns			
Dynamic Time Stamp Error RX	±4	ns			
Input Parameters					
pDelay Interval	31.25	ms			
Sync Interval	125	ms			
pDelay Turnaround Time	10	ms			
residenceTime	10	ms			
Input Correction Factors					
Mean Link Delay Averaging	0%				
NRR Drift Rate Correction	90%				
RR Drift Rate Error Correction	0%				
pDelayResp $ ightarrow$ Sync Type (Uniform)	1				
pDelayResp $ ightarrow$ Sync Max	100%				
pDelayResp → Sync Min	0%				
pDelayResp → Sync Target	10	ms			
mNRR Smoothing N	15, 1, 8				
mNRR Smoothing A	1, 15, 8				
Configuration					
Hops	1	.00			
Runs	100),000			

Input Errors					
Drift Type (Linear Temp Ramp)	2				
GM Clock Drift Max	+1.35	ppm/s			
GM Clock Drift Min	-1.35	ppm/s			
Fraction of GM nodes w/ Drift	80%				
non-GM Clock Drift Max	+1.35	ppm/s			
non-GM Clock Drift Min	-1.35	ppm/s			
Fraction of non-GM Nodes w/ Drift	80%				
Temp Max	+85.	°C			
Temp Min	-40.	°C			
Temp Ramp Rate	±1	°C/s			
Temp Ramp Period	125	S			
Temp Hold Period	30	S			
GM Scaling Factor	100%				
non-GM Scaling Factor	100%				
Timestamp Granularity TX	±4	ns			
Timestamp Granularity RX	±4	ns			
Dynamic Time Stamp Error TX	±4	ns			
Dynamic Time Stamp Error RX	±4	ns			
Input Parameters					
pDelay Interval	31.25	ms			
Sync Interval	125	ms			
pDelay Turnaround Time	10	ms			
residenceTime	10	ms			
Input Correction Factors					
Mean Link Delay Averaging	0%				
NRR Drift Rate Correction	90%				
RR Drift Rate Error Correction	0%				
pDelayResp \rightarrow Sync Type (Uniform)	1				
pDelayResp → Sync Max	100%				
pDelayResp → Sync Min	0%				
pDelayResp → Sync Target	10	ms			
mNRR Smoothing N	15, 1, 8				
mNRR Smoothing A	1, 15, 8				
Configuration					
Hops	1	.00			
Runs	100),000			

The portion of mNRRerror due to Clock Drift is larger than portion due to Timestamp errors; the opposite of the system-level view (slide 6).

At the system-level, a lot of the error due to Clock Drift cancels out node-to-node but Timestamp error does not. So, a smaller portion at an individual node can be a larger portion at the system level.

Input Errors					
Drift Type (Linear Temp Ramp)	2				
GM Clock Drift Max	+1.35	ppm/s			
GM Clock Drift Min	-1.35	ppm/s			
Fraction of GM nodes w/ Drift	80%				
non-GM Clock Drift Max	+1.35	ppm/s			
non-GM Clock Drift Min	-1.35	ppm/s			
Fraction of non-GM Nodes w/ Drift	80%				
Temp Max	+85.	°C			
Temp Min	-40.	°C			
Temp Ramp Rate	±1	°C/s			
Temp Ramp Period	125	S			
Temp Hold Period	30	S			
GM Scaling Factor	100%				
non-GM Scaling Factor	100%				
Timestamp Granularity TX	±4	ns			
Timestamp Granularity RX	±4	ns			
Dynamic Time Stamp Error TX	±4	ns			
Dynamic Time Stamp Error RX	±4	ns			
Input Parameters					
pDelay Interval	31.25	ms			
Sync Interval	125	ms			
pDelay Turnaround Time	10	ms			
residenceTime	10	ms			
Input Correction Factors					
Mean Link Delay Averaging	0%				
NRR Drift Rate Correction	90%				
RR Drift Rate Error Correction	0%				
pDelayResp $ ightarrow$ Sync Type (Uniform)	1				
pDelayResp $ ightarrow$ Sync Max	100%				
pDelayResp $ ightarrow$ Sync Min	0%				
pDelayResp → Sync Target	10	ms			
mNRR Smoothing N	15, 1, 8				
mNRR Smoothing A	1, 15, 8				
Configuration					
Hops	1	.00			
Runs	100),000			

Question...

- Why does Method 2 show an improvement over Method 1?
- From previous presentations, they were shown to be "mathematically equivalent". [See backup.]

Answer...

- They are only mathematically equivalent if T_{pdelay2pdelay} is exactly the same every time.
- Variations in $T_{pdelay2pdelay}$ affects the amount of error in mNRR...

$$mNRR_{errorTS_X} = \frac{\left(t_{3pderror} - t_{3pderror}'\right) - \left(t_{4pderror} - t_{4pderror}'\right)}{T_{pdelay2pdelay}}$$
$$mNRR_{errorCD_X} = \frac{T_{pdelay2pdelay}(clockDrift_n - clockDrift_{n-1})}{2 \times 10^3}$$

- Reducing the variability of T_{pdelay2pdelay} should alter the results.
 - IEEE 1588 specifies that T_{pdelay2pdelay} shall be between 90% and 130% of the nominal value, pDelayInterval.

T_{pdelay2pdelay} 90% - 130% Nominal (pDelayInterval)

Drift Type (Linear Temp Ramp) GM Clock Drift Max	2	,			
GM Clock Drift Max	+1 35	1			
	. 1.55	ppm/s			
GM Clock Drift Min	-1.35	ppm/s			
Fraction of GM nodes w/ Drift	80%				
non-GM Clock Drift Max	+1.35	ppm/s			
non-GM Clock Drift Min	-1.35	ppm/s			
Fraction of non-GM Nodes w/ Drift	80%				
Temp Max	+85.	°C			
Temp Min	-40.	°C			
Temp Ramp Rate	±1	°C/s			
Temp Ramp Period	125	S			
Temp Hold Period	30	S			
GM Scaling Factor	100%				
non-GM Scaling Factor	100%				
Timestamp Granularity TX	±4	ns			
Timestamp Granularity RX	±4	ns			
Dynamic Time Stamp Error TX	±4	ns			
Dynamic Time Stamp Error RX	±4	ns			
Input Parameters					
pDelay Interval	31.25	ms			
Sync Interval	125	ms			
pDelay Turnaround Time	10	ms			
residenceTime	10	ms			
Input Correction Factors					
Mean Link Delay Averaging	0%				
NRR Drift Rate Correction	90%				
RR Drift Rate Error Correction	0%				
pDelayResp \rightarrow Sync Type (Uniform)	1				
pDelayResp → Sync Max	100%				
pDelayResp → Sync Min	0%				
pDelayResp → Sync Target	10	ms			
mNRR Smoothing N	15, 1, 8				
mNRR Smoothing A	1, 15, 8				
Configuration					
conngulation					
Hops	1	.00			

T_{pdelay2pdelay} 95% - 105% Nominal (pDelayInterval)

Input Errors				
Drift Type (Linear Temp Ramp)	2			
GM Clock Drift Max	+1.35	ppm/s		
GM Clock Drift Min	-1.35	ppm/s		
Fraction of GM nodes w/ Drift	80%			
non-GM Clock Drift Max	+1.35	ppm/s		
non-GM Clock Drift Min	-1.35	ppm/s		
Fraction of non-GM Nodes w/ Drift	80%			
Temp Max	+85.	°C		
Temp Min	-40.	°C		
Temp Ramp Rate	±1	°C/s		
Temp Ramp Period	125	S		
Temp Hold Period	30	S		
GM Scaling Factor	100%			
non-GM Scaling Factor	100%			
Timestamp Granularity TX	±4	ns		
Timestamp Granularity RX	±4	ns		
Dynamic Time Stamp Error TX	±4	ns		
Dynamic Time Stamp Error RX	±4	ns		
Input Parameters				
pDelay Interval	31.25	ms		
Sync Interval	125	ms		
pDelay Turnaround Time	10	ms		
residenceTime	10	ms		
Input Correction Fact	ors			
Mean Link Delay Averaging	0%			
NRR Drift Rate Correction	90%			
RR Drift Rate Error Correction	0%			
pDelayResp \rightarrow Sync Type (Uniform)	1			
pDelayResp → Sync Max	100%			
pDelayResp → Sync Min	0%			
pDelayResp → Sync Target	10	ms		
mNRR Smoothing N	15, 1, 8			
mNRR Smoothing A	1, 15, 8			
Configuration				
Hops	1	.00		
Runs	100	0,000		

T_{pdelay2pdelay} 100% Nominal (pDelayInterval)

Input Errors				
Drift Type (Linear Temp Ramp)	2			
GM Clock Drift Max	+1.35	ppm/s		
GM Clock Drift Min	-1.35	ppm/s		
Fraction of GM nodes w/ Drift	80%			
non-GM Clock Drift Max	+1.35	ppm/s		
non-GM Clock Drift Min	-1.35	ppm/s		
Fraction of non-GM Nodes w/ Drift	80%			
Temp Max	+85.	°C		
Temp Min	-40.	°C		
Temp Ramp Rate	±1	°C/s		
Temp Ramp Period	125	S		
Temp Hold Period	30	S		
GM Scaling Factor	100%			
non-GM Scaling Factor	100%			
Timestamp Granularity TX	±4	ns		
Timestamp Granularity RX	±4	ns		
Dynamic Time Stamp Error TX	±4	ns		
Dynamic Time Stamp Error RX	±4	ns		
Input Parameters				
pDelay Interval	31.25	ms		
Sync Interval	125	ms		
pDelay Turnaround Time	10	ms		
residenceTime	10	ms		
Input Correction Fact	ors			
Mean Link Delay Averaging	0%			
NRR Drift Rate Correction	90%			
RR Drift Rate Error Correction	0%			
pDelayResp $ ightarrow$ Sync Type (Uniform)	1			
pDelayResp $ ightarrow$ Sync Max	100%			
pDelayResp → Sync Min	0%			
pDelayResp → Sync Target	10	ms		
mNRR Smoothing N	15, 1, 8			
mNRR Smoothing A	1, 15, 8			
Configuration				
Hops	1	00		
Runs	100	0,000		

Conclusion

- When using older pDelayResp timestamps to measure NRR, a combination of calculating using Nth previous pDelayResp and taking an average of A previous calculations, where N = A minimises Timestamp Errors. (Method 3)
 - Clock Drift errors are minimally affected for useful values of N & A.
- Reducing the variability of T_{pdelay2pdelay} alters the impact of this optimisation (lower variability → less impact) but does not remove it.
- Note that mNRR should not be optimised in isolation. At a single node, the optimal settings may generate much larger errors due to Clock Drift than Timestamp errors, with a consequent increase in overall mNRR_{error}. The errors due to Clock Drift will tend to cancel out at a system level.

Thank You

Backup

Background

- IEEE 802.1AS measures Rate Ratio (RR) via an accumulation of Neighbor Rate Ratios (NRRs). Classically, NRR is measured via timestamps from the two most recent pDelayResp messages.
- Errors in the measured NRR (mNRR) can arise from Timestamp Errors and errors due to Clock Drift between nodes.
 - As pDelayInterval increases, the effect of errors due to Clock Drift increases, while the effect of Timestamp Errors decreases.
- The balance between errors due to Clock Drift and errors due to Timestamp Errors can also be altered by calculating mNRR using older pDelayResp messages and/or averaging multiple mNRR measurements.
 - I've named this approach mNRRsmoothing as, in general, it reduces the jitter of mNRR values.
- This presentation details different options for mNRRsmoothing and their effect on mNRR_{error}.

References

[1] "60802 Time Synchronisation – Monte Carlo Analysis: 100-hop Model, "Linear" Clock Drift, NRR Accumulation Overview & Details, Including Equations", David McCall, IEC/IEEE 60802 contribution, September 2022

[2] "60802 Dynamic Time Sync Error – NRR Medians, Algorithms
 & Analysis Validation" David McCall & Kevin Stanton, IEC/IEEE 60802
 contribution, January 2022

Background - mNRR

Background - mNRR_{error}

Background – Timestamp Error Equations

- Both TSGE and DTSE are modelled via uniform distributions between a maximum and a minimum.
- Timestamp Granularity always results in a timestamp after the event occured...

 $Error_{TGSE} = \sim U(0, +TSG)$

...(where TSG is Timestamp Granularity) however, because the consequent errors are always in interval measurements which involve two events and two timestamps, modelling it as an error between ±TSG/2 is equivalent. In the R Studio script the parameter TGSE represents TSG/2...

$$Error_{TSGETX} = \sim U\left(-\frac{TSG}{2}, +\frac{TSG}{2}\right) = \sim U(-TSGE_{TX}, +TSGE_{TX}) \qquad Error_{TSGERX} = \sim U(-TSGE_{RX}, +TSGE_{RX})$$

- DTSE magnitude and probability distribution is implementation dependant, but implementations that deliver a uniform probability between a minimum and maximum, equally spread either side of zero, are common and a worst case.
 - Triangular or normal distributions will have fewer extreme errors.

 $Error_{DTSETX} = \sim U(-DTSE_{TX}, +DTSE_{TX})$

 $Error_{DTSERX} = \sim U(-DTSE_{RX}, +DTSE_{RX})$

Background - Clock Drift Error – Relevant Intervals

Background – mNRR_{error} due to Clock Drift

- Effective NRR Measurement \rightarrow Actual NRR Measurement
 - Relevant drift is between the current node's clock (n) and the upstream node's clock (n-1).
 - NRR is measured via information from a pair of pDelayResp messages. As Clock Drift is assumed to be linear, the effective measurement point is half-way between the two. The actual measurement point is at receipt of the second message.
 - The interval between the two pDelayResp messages is nominally the pDelay Interval. IEEE 1588 defines the permitted minimum and maximum interval as 90% and 130% of the nominal value. [See IEEE 1588-2019 9.5.13.2]
 - The interval is modelled as a uniform distribution between these two.

 $T_{pdelay2pdelay} = \sim U(pdelayInterval. 0.9, pdelayInterval. 1.3)$

Background - mNNRsmoothingN

• The Monte Carlo approach models using timestamp values from older pDelayResp messages via the *mNRRsmoothingN* parameter adjusting *Tpdelay2pdelay*.

Correction Parameter	Default	Unit	Notes
mNRRsmoothingN	1	-	Must be a whole number, minimum value 1.

$$T_{pdelay2pdelay} = \sum_{x=1}^{mNRRsmoothingN} \sim U(pdelayInterval. 0.9, pdelayInterval. 1.3)$$

Background – mNRR Smoothing M

- Taking a median of M past mNRR calculations was also investigated, but is not recommended when RR is calculated via an accumulation of NRRs.
 - Use of a Median value means the effective delay between measurement of mNRR and use in Sync is variable, which reduces the cancellation of error due to Clock Drift from node-to-node.
 - See [2] for more detail.
- Note: may be different if calculating RR directly from Sync messages.

- Taking a simple average of the more recent 8 mNRR calculations (A to G) where mNRRsmoothingN = 1 is mathematically the same as a single calculation where mNRRsmoothingN =7 (H)
 - Exactly the same for Timestamp Error
 - Approximately the same for error due to Clock Drift. The effective measurement point for an average (A to G) is an average of 8 effective measurement points. The effective measurement point for mNRRsmoothingN = 7 is half way between $t_{4(p)}$ and $t_{4(p-7)}$ (i.e. approx. 7x worse that using timestamps from two most recent pDelayResp messages).
- But there are other options...

G

Η

- Taking an average of the most recent 4 mNRR calculations where mNRRsmoothing = 4 delivers some averaging of Timestamp Errors and errors due to Clock Drift
 - Worst case Timestamp Error is the same, but distribution is more Gaussian (with average zero).
 - Error due to Clock Drift is still approx. 7x worse than using timestamps from two most recent pDelayResp messages.

