Overview of YANG Modules

Authors:
Martin Mittelberger, Siemens AG
Josef Dorr, Siemens AG
Günter Steindl, Siemens AG
Nemanja Stamenic, Siemens AG

12/2021
CONTENTS

1 Overview ..7
 1.1 Scope of this Document ...7
 1.2 List of used YANG Modules ...7
 1.3 YANG Tree Diagram Modules ..9
 1.4 YANG „Features“ ..10
 1.5 GAP-List ...11
 1.5.1 Activate Preemption ...11
 1.5.2 aLdpXdot3LocAddFragSize attribute ...11
 1.5.3 RSTP/MSTP YANG Data Model ..11
 1.5.4 MAU Types ..11
 1.5.5 MEF 10.3 Configuration ...11
 1.5.6 UNI YANG Module of CNC ..12
 1.5.7 Device Capabilities and Quantities YANG ...12
 1.5.8 On/- Offline Configuration of devices ...12
 1.5.9 Netconf Datastore Architecture for “Namespaces” ..12
 1.5.10 Date-Time format in YANG ..12
 1.5.11 String handling (UTF8) ..12
 1.5.12 Missing MIB Data Objects in ietf-system model ..12
 1.5.13 Missing Data Objects in ietf-interfaces model ..13

2 System Configuration (ietf-system) ..13
 2.1 Overview ...13
 2.1.1 Main Features ...13
 2.2 Tree Diagram ..14
 2.3 Usage of YANG Data Objects ...16
 2.3.1 Container system ...16
 2.3.2 Container system-state/platform (Operational State) ..17
 2.3.3 Container system-state/clock (Operational State) ..17
 2.4 Remote Procedure Calls ...18
 2.4.1 set-current-datetime(current-datetime) ...18
 2.4.2 system-restart() ...18
 2.4.3 system-shutdown() ...18

3 Hardware Configuration (ietf-hardware) ...18
 3.1 Overview ...18
 3.1.1 Main Features ...18
 3.2 Tree Diagram ..19
 3.3 Usage of YANG Data Objects ...20
 3.4 Notifications ..22
 3.4.1 hardware-state-change ..22
 3.4.2 hardware-state-oper-enabled ...23
 3.4.3 hardware-state-oper-disabled ..23

4 Interface Management (ietf-interface) ..23
 4.1 Overview ...23
 4.1.1 Main Features ...23
4.2 Tree Diagram ... 24
4.3 Usage of YANG Data Objects .. 25
 4.3.1 Container ietf/interfaces/interfaces 25
 4.3.2 List ietf/interfaces/interfaces/interface 25
 4.3.3 Container Statistics .. 28
4.4 Augmentation by Module ieee802-dot1q-bridge (IEEE 802.1Qcp/D2-2 and
 IEEE 802.1Qcw/D1-2) .. 32
 4.4.1 Additional Container ietf/interfaces/interface/bridge-port 32
4.5 Augmentation by Module ieee802-dot1cb-stream-identification (IEEE
 802.1CBcv) .. 38
 4.5.1 Additional Container ietf/interfaces/interface/statistics/stream-id . 38
4.6 Augmentation by Module ieee802-dot1cb-frer (IEEE 802.1CBcv) 40
 4.6.1 Additional Container ietf/interfaces/interface/statistics/frer 40
4.7 Augmentation by IEEE 802.3.2 .. 43
 4.7.1 Container ietf/interfaces/ethernet 43
4.8 Augmentation by Module ieee802-dot1q-sched 44
 4.8.1 Container ietf/interfaces/interface/bridge-port/gate-parameter-table 44
4.9 Augmentation by Module ieee802-dot1q-preemption 48
 4.9.1 Container ietf/interfaces/interface/bridge-port/frame-preemption-
 parameters ... 48
5 Bridges and Bridged Networks (ieee802-dot1q-bridge) 50
 5.1 Overview ... 50
 5.1.1 Main Features .. 50
 5.2 Tree Diagram .. 51
5.3 Usage of YANG Data Objects .. 58
 5.3.1 Container ieee802-dot1q-bridge/bridges 58
 5.3.2 List ieee802-dot1q-bridge/bridges/bridge 58
 5.3.3 List ieee802-dot1q-bridge/bridges/bridge/component 59
 5.3.4 Container ieee802-dot1q-bridge/bridges/bridge/component/capabilities 60
 5.3.5 Container ieee802-dot1q-bridge/bridges/bridge/component/filtering-
 database ... 61
 5.3.6 Container ieee802-dot1q-bridge/bridges/bridge/component/permanent-
 database ... 62
 5.3.7 Container ieee802-dot1q-bridge/bridges/bridge/component/bridge-vlan 63
 5.3.8 Container ieee802-dot1q-bridge/bridges/bridge/component/bridge-mst ... 64
6 Station and Media Access Control Connectivity Discovery (ieee802-dot1ab-lldp) 65
 6.1 Overview ... 65
 6.2 Tree Diagram .. 65
 6.3 Usage of YANG Data Objects .. 67
 6.3.1 Container iee802-dot1ab-lldp/lldp 67
 6.3.2 Container iee802-dot1ab-lldp/lldp/remote-statistics 68
 6.3.3 Container iee802-dot1ab-lldp/lldp/local-system-data 69
 6.3.4 Container iee802-dot1ab-lldp/lldp/port 69
 6.4 Notifications .. 71
 6.4.1 remote-table-change (optional) 71
 6.5 Augmentation by Module iee802-dot1t-lldp-basic-tlv (IEEE 802.1Qcz-d2-0) 71
 6.5.1 Additional Leaves for /ieee802-dot1ab-lldp 71
 6.5.2 Additional Leaves for /ieee802-dot1ab-lldp/port 71
 6.5.3 Additional Leaves for /ieee802-dot1ab-lldp/port/remote-systems-data 72
14.1 Overview ... 107
14.1.1 Main Features ... 108
14.2 Tree Diagram .. 109
14.3 Usage of YANG Data Objects .. 113
14.3.1 List /ietf-subscribed-notifications/streams/stream 113
14.3.2 List /ietf-subscribed-notifications/filters/stream-filter 114
14.3.3 List /ietf-subscribed-notifications/subscriptions/subscription ... 115
14.4 Remote Procedure Calls .. 116
14.4.1 establish-subscription .. 116
14.4.2 modify-subscription .. 116
14.4.3 delete-subscription ... 116
14.4.4 kill-subscription .. 117
14.5 Notifications .. 117
14.5.1 replay-completed .. 117
14.5.2 subscription-completed .. 117
14.5.3 subscription-modified .. 117
14.5.4 subscription-resumed .. 117
14.5.5 subscription-started .. 117
14.5.6 subscription-suspended .. 117
14.5.7 subscription-terminated .. 117
15 LLDP extension YANG model for the basicSet (ieee802-dot1q-lldp-basic-tlv) .. 118
15.1 Overview ... 118
15.1.1 Main Features ... 118
15.2 Tree Diagram .. 118
15.3 Usage of YANG Data Objects .. 119
16 System Capabilities model (ietf-system-capabilities) 119
16.1 Overview ... 119
16.1.1 Main Features ... 119
16.2 Tree Diagram .. 120
16.3 Usage of YANG Data Objects .. 120
16.3.1 List /ietf-system-capabilities/datastore-capabilities 120
16.4 Augmentation by Module ietf-notification-capabilities (draft-ietf-notification-capabilities) .. 120
16.4.1 Additional Container /ietf-system-capabilities/subscription-capabilities .. 120
16.4.2 Additional Container /ietf-system-capabilities/datastore-capabilities/per-node-capabilities/subscription-capabilities 122
17 Notification Capabilities model (ietf-notification-capabilities) 123
17.1 Overview ... 123
17.1.1 Main Features ... 123
17.2 Tree Diagram .. 123
17.3 Usage of YANG Data Objects .. 124
18 NACM model (ietf-netconf-acm) ... 124
18.1 Overview ... 124
18.2 Tree Diagram .. 125
18.3 Usage of YANG Data Objects .. 125
18.3.1 Container /ietf-netconf-acm/nacm 125
19 NMDA model (ietf-datastores and ietf-origin) 127
19.1 Overview ... 127
19.2 Tree Diagram .. 127
19.3 Usage of YANG Data Objects .. 127
20 NETCONF Monitoring model (ietf-netconf-monitoring) ... 127
 20.1 Overview .. 127
 20.2 Tree Diagram .. 127
 20.3 Usage of YANG Data Objects .. 129
 20.3.1 Container /ietf-netconf-monitoring/netconf-state ... 129
 20.4 Remote Procedure Calls ... 129
 20.4.1 get-schema ... 129
21 YANG Library model (ietf-yang-library) .. 130
 21.1 Overview .. 130
 21.2 Tree Diagram .. 130
 21.3 Usage of YANG Data Objects .. 131
 21.3.1 Container /ietf-yang-library/yang-library ... 131
 21.3.2 Container /ietf-yang-library/modules-state ... 131
 21.4 Notifications .. 132
 21.4.1 yang-library-update ... 132
22 NETCONF Base Notifications model (ietf-netconf-notifications) 132
 22.1 Overview .. 132
 22.2 Tree Diagram .. 132
 22.3 Usage of YANG Data Objects .. 133
 22.4 Notifications .. 133
 22.4.1 netconf-config-change ... 133
 22.4.2 netconf-capability-change ... 133
 22.4.3 netconf-session-start ... 133
 22.4.4 netconf-session-end ... 134
 22.4.5 netconf-confirmed-commit .. 134
1 Overview

1.1 Scope of this Document
This document describes YANG modules which are required for devices according the industrial profile, defined in IEC/IEEE 60802.

It is intended as information for contributors and reviewers to decide, which leaves out of the vast amount of available leaves in the YANG modules shall be used for the industrial profile without the requirement to scan through all relevant IEEE, IETF and other documents and YANG modules by each individual.

For detailed information please see the referenced documents.

Also a very good information platform for YANG modules and their content is the YANG catalog. It provides a tree view in the YANG module detail viewer with information about all leaves in a YANG module.

This document provides the background information collected from the YANG modules. The textual contribution to IEC/IEEE 60802 regarding Conformance requirements for configuration is derived from this information.

1.2 List of used YANG Modules
The usage of following YANG modules is described in this document:

<table>
<thead>
<tr>
<th>YANG Module</th>
<th>YANG Module</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf-system</td>
<td>M</td>
<td>A YANG Data Model for System Management</td>
<td>https://datatracker.ietf.org/doc/rfc7317/</td>
</tr>
<tr>
<td>ietf-hardware</td>
<td>M</td>
<td>A YANG Data Model for Hardware Management</td>
<td>https://datatracker.ietf.org/doc/rfc8348/</td>
</tr>
<tr>
<td>ietf-interface</td>
<td>M</td>
<td>A YANG Data Model for Interface Management</td>
<td>https://datatracker.ietf.org/doc/rfc8343/</td>
</tr>
<tr>
<td>ieee802-dot1q-bridge</td>
<td>M</td>
<td>Bridges and Bridged Networks - Amendment: YANG Data Model</td>
<td>IEEE P802.1Qcp/D2.2 Clause 48</td>
</tr>
<tr>
<td>ieee802-dot1q-bridge</td>
<td>M</td>
<td>Bridges and Bridged Networks - Amendment: YANG Data Models for Scheduled Traffic, Frame Preemption, and Per-Stream Filtering and Policing ¹</td>
<td>IEEE P802.1Qcw/D1.2 Clause 48</td>
</tr>
<tr>
<td>ieee802-dot1ab-lddp</td>
<td>M</td>
<td>Station and Media Access Control Connectivity Discovery Amendment: YANG Data Model</td>
<td>IEEE P802.1ABcu/D1.6 Clause 12</td>
</tr>
<tr>
<td>ieee802-ethernet-interface</td>
<td>M</td>
<td>IEEE Standard for Ethernet – YANG Data Model Definitions</td>
<td>IEEE Std802.3.2-2019 Clause 5</td>
</tr>
</tbody>
</table>

¹ IEEE P802.1Qcw comprises some corrections of the YANG model described in IEEE P802.1Qcp
<table>
<thead>
<tr>
<th>ietf-keystore</th>
<th>M</th>
<th>A YANG Data Model for a Keystore</th>
<th>draft-ietf-netconf-keystore-22</th>
</tr>
</thead>
<tbody>
<tr>
<td>ietf-truststore</td>
<td>M</td>
<td>A YANG Data Model for a Truststore</td>
<td>draft-ietf-netconf-trust-anchors-10</td>
</tr>
<tr>
<td>ieee1588-ptp</td>
<td>M</td>
<td>YANG Data Model for the configuration and status of IEEE 1588 clocks</td>
<td>IEEE P1588e-D0-1</td>
</tr>
<tr>
<td>iee802-dot1q-sched</td>
<td>M</td>
<td>YANG Data Model for scheduled traffic</td>
<td>IEEE P802.1Qcw/D1.2 Clause 48</td>
</tr>
<tr>
<td>iee802-dot1q-preemption</td>
<td>M</td>
<td>YANG Data Model for Preemption</td>
<td>IEEE P802.1Qcw/D1.2 Clause 48</td>
</tr>
<tr>
<td>ietf-yang-push</td>
<td>M</td>
<td>Subscription to YANG Notifications for Datastore Updates</td>
<td>https://datatracker.ietf.org/doc/rfc8641/</td>
</tr>
<tr>
<td>ietf-subscribed-notifications</td>
<td>M</td>
<td>Subscription to YANG Notifications</td>
<td>https://datatracker.ietf.org/doc/rfc8639/ see also: https://datatracker.ietf.org/doc/rfc8640/</td>
</tr>
<tr>
<td>iee802-dot1q-ldp-basic-tlv</td>
<td>M</td>
<td>Basic set of IEEE 802.1 Organizationally Specific TLVs</td>
<td>IEEE P802.1Qcz/D2.0</td>
</tr>
<tr>
<td>ietf-system-capabilities</td>
<td>M</td>
<td>Capabilities for NETCONF or RESTCONF server or notification publisher</td>
<td>https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-capabilities</td>
</tr>
<tr>
<td>ietf-notification-capabilities</td>
<td>M</td>
<td>Capabilities for NETCONF or RESTCONF server or notification publisher</td>
<td>https://datatracker.ietf.org/doc/html/draft-ietf-netconf-notification-capabilities</td>
</tr>
<tr>
<td>ietf-netconf-monitoring</td>
<td>M</td>
<td>YANG Module for NETCONF Monitoring</td>
<td>https://datatracker.ietf.org/doc/rfc6022/</td>
</tr>
<tr>
<td>ietf-yang-library</td>
<td>M</td>
<td>YANG Library</td>
<td>https://datatracker.ietf.org/doc/rfc8525/</td>
</tr>
<tr>
<td>ietf-netconf-notifications</td>
<td>M</td>
<td>NETCONF Base Notifications</td>
<td>https://datatracker.ietf.org/doc/rfc6470/</td>
</tr>
</tbody>
</table>
1.3 YANG Tree Diagram conventions

This is an excerpt with the node representation, used in YANG tree diagrams. The syntax of YANG Tree Diagrams is described in detail in /RFC8791/.

Each node in a YANG module is printed as:
<status>--<flags> <name><opts> <type> <if-features>

<status> is one of:
+ for current
x for deprecated
o for obsolete

<flags> is one of:
rw for configuration data nodes and choice nodes
ro for non-configuration data nodes and choice nodes, output parameters to rpcs and actions, and notification parameters
-w for input parameters to rpcs and actions
-u for uses of a grouping
-x for rpcs and actions
-n for notifications
mp for nodes containing a "mount-point" extension statement

Case nodes do not have any <flags>.

<name> is the name of the node
(<name>) means that the node is a choice node
:(<name>) means that the node is a case node

If the node is augmented into the tree from another module, its name is printed as <prefix>:<name>, where <prefix> is the prefix defined in the module where the node is defined.

If the node is a case node, there is no space before the <name>.

<opts> is one of:
? for an optional leaf, choice, anydata, or anyxml
! for a presence container
* for a leaf-list or list
[<keys>] for a list's keys
/ for a top-level data node in a mounted module
@ for a top-level data node of a module identified in a mount point parent reference

$type is the name of the type for leaves and leaf-lists
If the type is a leafref, the type is printed as either
(1) "-> TARGET", where TARGET is the leafref path, with prefixes removed if possible or
(2) "leafref".
<if-features> is the list of features this node depends on, printed within curly brackets and a question mark "{...}?"

1.4 YANG „Features“

The basic YANG models define mandatory and optional leaves in the YANG tree. Mandatory leaves shall exist in the YANG tree of a device, whereas optional leaves may exist depending on the implementation of the device.

In addition to that, YANG allows the modeler to define sections of the model to be conditional. The server controls whether these conditional portions of the model are supported or valid for that particular server.

YANG supports this conditional mechanism using a construct called "feature". Features give the modeler a mechanism for making portions of the module conditional in a manner that is controlled by the server. The model can express constructs that are not universally present in all servers. These features are included in the model definition, allowing a consistent view and allowing applications to learn which features are supported and tailor their behavior to the server.

A module may declare any number of features, identified by simple strings, and may make portions of the module optional based on those features. If the server supports a feature, then the corresponding portions of the module are valid for that server. If the server doesn’t support the feature, those parts of the module are not valid, and applications should behave accordingly.

A list of features that are defined in a specific YANG module and a proposal how to use them in IEC/IEEE 60802 is included in this document for each module that defines features.
1.5 GAP-List

This is an (incomplete) list of identified gaps up to now.

1.5.1 Activate Preemption

There is only a read-only leaf for preemption.

A configurable leaf to activate / deactivate preemption is missing.

1.5.2 aLdpXdot3LocAddFragSize attribute

802.3 specifies aLdpXdot3LocAddFragSize in “802.3-2018 Table 30–8—LLDP capabilities (additional packages)” also for SET-operations. However the description of aLdpXdot3LocAddFragSize defines no restrictions of the value range besides the size (2 bits).

Assuming that a devices doesn’t have to support every possible value, there is the possibility that a configuration is written to the device, which is not supported by the device. Maybe there is a more detailed specification required in 802.3 or in the IEC/IEEE 60802 profile.

Anyway this parameter is missing in ieee802-dot1q-preemption.

1.5.3 RSTP/MSTP YANG Data Model

RSTP/MSTP YANG data model is missing.

1.5.4 MAU Types

MAU Types are missing in YANG data models. -> in LLDP-EXT-DOT3-MIB?

1.5.5 MEF 10.3 Configuration

How do the following parameters match the flow meter definition?

- Committed Information rate
- Committed burst size
- Rank
- Coupling flag
- Envelope
- Excess information rate
- Excess burst size
- Color
- ...

1.5.6 **UNI YANG Module of CNC**

-> Qdj

1.5.7 **Device Capabilities and Quantities YANG**

-> 60802

1.5.8 **On-/ Offline Configuration of devices**

How to create an offline version of YANG modules for devices?

1.5.9 **Netconf Datastore Architecture for “Namespaces”**

Separate Datastores required for e.b. security, device settings, UNI, application settings.

1.5.10 **Date-Time format in YANG**

60802 devices don’t have calendar information!

1.5.11 **String handling (UTF8)**

Application information is not necessarily UTF8.

1.5.12 **Missing MIB Data Objects in ietf-system model**

This Chapter contains objects which are available in MIB2 objects without a corresponding leave in any existing YANG model.

<table>
<thead>
<tr>
<th>mib-2 Name</th>
<th>mib-2 Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>sysDescr</td>
<td>string</td>
<td>ro</td>
<td>???</td>
<td>mandatory</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>sysObjectID</td>
<td>OBJECT IDENTIFIER</td>
<td>ro</td>
<td>???</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1.5.13 Missing Data Objects in ietf-interfaces model

This chapter contains objects which are available in MIB2 objects without a corresponding leave in any existing YANG model.

<table>
<thead>
<tr>
<th>mib-2 Name</th>
<th>mib-2 Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Note</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ifMtu</td>
<td>Integer32</td>
<td>ro</td>
<td>???</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 System Configuration (ietf-system)

2.1 Overview

The module ietf-system is defined in RFC 7317.

This module contains a collection of YANG definitions for the configuration and identification of some common system properties within a device containing a NETCONF server. This includes data node definitions for system identification, time-of-day management, user management, DNS resolver configuration, and some protocol operations for system management.

2.1.1 Main Features

The module ietf-system comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

2.1.1.1 Feature radius

This feature indicates that the device can be configured as a RADIUS client according to RFC 2865: Remote Authentication Dial In User Service (RADIUS).

This feature is not required in 60802.
2.1.1.2 Feature authentication

This feature indicates that the device supports configuration of user authentication.

This feature is not required in 60802.

2.1.1.3 Feature NTP

This feature indicates that the device can be configured to use one or more NTP servers to set the system date and time.

This feature is not required in 60802.

2.2 Tree Diagram

module: ietf-system
 +--rw system
 | +--rw contact? string
 | +--rw hostname? inet:domain-name
 | +--rw location? string
 | +--rw clock
 | | +--rw (timezone)?
 | | | +--:{timezone-name} {timezone-name}?
 | | | | +--rw timezone-name? timezone-name
 | | | +--:{timezone-utc-offset}
 | | | | +--rw timezone-utc-offset? int16
 | | +--rw ntp! {ntp}?
 | | | +--rw enabled? boolean
 | | | | +--rw server* [name]
 | | | | | +--rw name string
 | | | | | +--rw (transport)
 | | | | | | +--:{udp}
 | | | | | | | +--rw udp
 | | | | | | | | +--rw address inet:host
 | | | | | | | | | +--rw port? inet:port-number {ntp-udp-port}?
 | | | | | | | | | | +--rw association-type? enumeration
 | | | | | | | | | | | +--rw iburst? boolean
 | | | | | | | | | | | | +--rw prefer? boolean
 | | | | | | | | +--rw dns-resolver
 | | | | | | | | | +--rw search* inet:domain-name
 | | | | | | | | | | +--rw server* [name]
 | | | | | | | | | | | +--rw name string
 | | | | | | | | | | | | +--rw (transport)
---: (udp-and-tcp)
 ---: rw udp-and-tcp
 ---: rw address inet:ip-address
 ---: rw port? inet:port-number {dns-udp-tcp-port}?
 ---: rw options
 ---: rw timeout? uint8
 ---: rw attempts? uint8
 ---: rw radius {radius}?
 ---: rw server* [name]
 ---: rw name string
 ---: rw (transport)
 ---: (udp)
 ---: rw address inet:host
 ---: rw authentication-port? inet:port-number
 ---: rw shared-secret string
 ---: rw authentication-type? identityref
 ---: rw options
 ---: rw timeout? uint8
 ---: rw attempts? uint8
 ---: rw authentication {authentication}?
 ---: rw user-authentication-order* identityref
 ---: rw user* [name] {local-users}?
 ---: rw name string
 ---: rw password? ianach:encrypt-hash
 ---: rw authorized-key* [name]
 ---: rw name string
 ---: rw algorithm string
 ---: rw key-data binary
---: ro system-state
 ---: ro platform
 ---: ro os-name? string
 ---: ro os-release? string
 ---: ro os-version? string
 ---: ro machine? string
 ---: ro clock
 ---: ro current-datetime? yang:date-and-time
 ---: ro boot-datetime? yang:date-and-time

rpcs:
2.3 Usage of YANG Data Objects

2.3.1 Container system

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>contact</td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The administrator contact information for the system. A server implementation MAY map this leaf to the sysContact MIB object. Such an implementation needs to use some mechanism to handle the differences in size and characters allowed between this leaf and sysContact.</td>
<td>RFC 3418: MIB for SNMP SNMPv2-MIB.sysContact</td>
</tr>
<tr>
<td>hostname</td>
<td>domain-name</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The name of the host. This name can be a single domain label or the fully qualified domain name of the host.</td>
<td>Equivalent to SNMPv2-MIB.sysName</td>
</tr>
<tr>
<td>location</td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The system location. A server implementation MAY map this leaf to the sysLocation MIB object. Such an implementation needs to use some mechanism to handle the differences in size and characters allowed between this leaf and sysLocation.</td>
<td>RFC 3418: MIB for SNMP SNMPv2-MIB.sysLocation</td>
</tr>
<tr>
<td>clock</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Configuration of the system date and time properties</td>
<td></td>
</tr>
<tr>
<td>ntp</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Configuration of the NTP client</td>
<td></td>
</tr>
</tbody>
</table>
2.3.2 Container system-state/platform (Operational State)

This container holds the vendor-specific information for identifying the system platform and operating system.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>os-name</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The name of the operating system in use - for example, 'Linux'</td>
<td>IEEE Std 1003.1-2008 - utsname.sysname</td>
</tr>
<tr>
<td>os-release</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The current release level of the operating system in use. This string MAY indicate the OS source code revision</td>
<td>IEEE Std 1003.1-2008 - utsname.release</td>
</tr>
<tr>
<td>os-version</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The current version level of the operating system in use. This string MAY indicate the specific OS build date and target variant information</td>
<td>IEEE Std 1003.1-2008 - utsname.version</td>
</tr>
<tr>
<td>machine</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>A vendor-specific identifier string representing the hardware in use</td>
<td>IEEE Std 1003.1-2008 - utsname.machine</td>
</tr>
</tbody>
</table>

2.3.3 Container system-state/clock (Operational State)

Monitoring of the system date and time properties.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>current-time</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The current system date and time</td>
<td>-</td>
</tr>
</tbody>
</table>
2.4 Remote Procedure Calls

The RPCs which are specified in ietf-system are not required for 60802.
If they are not implemented in any 60802 device, they should be deviated as "not-supported" for the specific devices, so that they are marked as inaccessible.

2.4.1 set-current-datetime(current-datetime)

Set the /system-state/clock/current-datetime leaf to the specified value.
If the system is using NTP (i.e., /system/ntp-enabled is set to 'true'), then this operation will fail with error-tag 'operation-failed' and error-app-tag value of 'ntp-active'.

2.4.2 system-restart()

Request that the entire system be restarted immediately.
A server SHOULD send an rpc reply to the client before restarting the system.

2.4.3 system-shutdown()

Request that the entire system be shut down immediately.
A server SHOULD send an rpc reply to the client before shutting down the system.

3 Hardware Configuration (ietf-hardware)

3.1 Overview

The module ietf-hardware is defined in RFC 8348.
This module defines a YANG data model for the management of hardware on a single server. The data model includes configuration and system state (status information and counters for the collection of statistics).

3.1.1 Main Features

3.1.1.1 Feature entity-mib

This feature indicates that the device implements the ENTITY-MIB.
3.1.1.2 Feature hardware-state

Indicates that ENTITY-STATE-MIB objects are supported.

3.1.1.3 Feature hardware-sensor

Indicates that ENTITY-SENSOR-MIB objects are supported.

3.2 Tree Diagram

```yang
module: ietf-hardware
  +---rw hardware
      +---ro last-change? yang:date-and-time
      +---rw component* [name]
          +---rw name                  string
          +---rw class                 identityref
          +---ro physical-index?      int32 {entity-mib}?
          +---ro description?         string
          +---rw parent?              -> ../../component/name
          +---ro parent-rel-pos?      int32
          +---ro contains-child*      -> ../../component/name
          +---ro hardware-rev?        string
          +---ro firmware-rev?        string
          +---ro software-rev?        string
          +---ro serial-num?          string
          +---ro mfg-name?            string
          +---ro model-name?          string
          +---rw alias?               string
          +---rw asset-id?            string
          +---ro is-fru?              boolean
          +---ro mfg-date?            yang:date-and-time
          +---rw uri*                 inet:uri
          +---ro uuid?                yang:uuid
          +---rw state {hardware-state}?
              +---ro state-last-changed? yang:date-and-time
              +---rw admin-state?        admin-state
              +---ro oper-state?         oper-state
              +---ro usage-state?        usage-state
              +---ro alarm-state?        alarm-state
              +---ro standby-state?      standby-state
          +---ro sensor-data {hardware-sensor}?```
3.3 Usage of YANG Data Objects

3.3.1.1 Container /ietf-hardware/hardware

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>last-change</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>component</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.1.2 List /ietf-hardware/hardware/component

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The name assigned to this component.</td>
<td>-</td>
</tr>
<tr>
<td>class</td>
<td>identityref</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalClass</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>physical-index²</td>
<td>int32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalIndex</td>
<td></td>
</tr>
<tr>
<td>description</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalDescr</td>
<td></td>
</tr>
<tr>
<td>parent</td>
<td>leafref</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalContainedIn</td>
<td></td>
</tr>
<tr>
<td>parent-rel-pos</td>
<td>int32</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalParentRelPos</td>
<td></td>
</tr>
<tr>
<td>contains-child</td>
<td>leaf-list</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalChildIndex</td>
<td></td>
</tr>
<tr>
<td>hardware-rev</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalHardwareRev</td>
<td></td>
</tr>
<tr>
<td>firmware-rev</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalFirmwareRev</td>
<td></td>
</tr>
<tr>
<td>software-rev</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalSoftwareRev</td>
<td></td>
</tr>
<tr>
<td>serial-num</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalSerialNum</td>
<td></td>
</tr>
<tr>
<td>mfg-name</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalMfgName</td>
<td></td>
</tr>
</tbody>
</table>

² if-feature "entity-mib"
<table>
<thead>
<tr>
<th>model-name</th>
<th>string</th>
<th>ro</th>
<th>optional</th>
<th>mandatory</th>
<th>The vendor-specific model name identifier string associated with this physical component.</th>
<th>RFC 6933: Entity MIB (Version 4) - entPhysicalModelName</th>
</tr>
</thead>
<tbody>
<tr>
<td>alias</td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>An 'alias' name for the component, as specified by a network manager, that provides a non-volatile 'handle' for the component.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalAlias</td>
</tr>
<tr>
<td>asset-id</td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>This node is a user-assigned asset tracking identifier for the component.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalAssetID</td>
</tr>
<tr>
<td>is-fru</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>This node indicates whether or not this component is considered a 'field-replaceable unit' by the vendor.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalIsFRU</td>
</tr>
<tr>
<td>mfg-date</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The date of manufacturing of the managed component.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalMfgDate</td>
</tr>
<tr>
<td>uri</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>This node contains identification information about the component.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalUris</td>
</tr>
<tr>
<td>uuid</td>
<td>yang:uuid</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>A Universally Unique Identifier of the component.</td>
<td>RFC 6933: Entity MIB (Version 4) - entPhysicalUUID</td>
</tr>
<tr>
<td>state³</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>State-related nodes</td>
<td>RFC 4268: Entity State MIB</td>
</tr>
<tr>
<td>sensor-data⁴</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Sensor-related nodes.</td>
<td>RFC 3433: Entity Sensor Management Information Base</td>
</tr>
</tbody>
</table>

### 3.4 Notifications

#### 3.4.1 hardware-state-change

A hardware-state-change notification is generated when the value of /hardware/last-change changes in the operational state.

---

³ if-feature "hardware-state"

⁴ if-feature "hardware-sensor"
3.4.2 hardware-state-oper-enabled
A hardware-state-oper-enabled notification signifies that a component has transitioned into the 'enabled' state.

3.4.3 hardware-state-oper-disabled
A hardware-state-oper-disabled notification signifies that a component has transitioned into the 'disabled' state.

4 Interface Management (ietf-interface)

4.1 Overview
The module ietf-interfaces is defined in RFC 8343.
The ietf-interfaces YANG model is the central model for managing network interfaces. It is augmented by several other YANG modules in other standards.
Note: The deprecated container "interfaces-states" is not used in 60802.

4.1.1 Main Features
The module ietf-interfaces comprises the feature-definitions listed in this section.
It is optional for a server to support features, so these functionalities are optional in the YANG tree.

4.1.1.1 Feature arbitrary-names
This feature indicates that the device allows user-controlled interfaces to be named arbitrarily.
This feature is not required in 60802.

4.1.1.2 Feature pre-provisioning
This feature indicates that the device supports pre-provisioning of interface configuration, i.e., it is possible to configure an interface whose physical interface hardware is not present on the device.
This feature is not required in 60802.

4.1.1.3 Feature if-mib
This feature indicates that the device implements the IF-MIB.
This feature is not required in 60802.
4.2 Tree Diagram

module: ietf-interfaces
  +---rw interfaces
  |   +---rw interface* [name]
  |     |   +---rw name               string
  |     |   +---rw description?      string
  |     |   +---rw type              identityref
  |     |   +---rw enabled?          boolean
  |     |   +---rw link-up-down-trap-enable? enumeration {if-mib}?
  |     |   +---ro admin-status       enumeration {if-mib}?
  |     |   +---ro oper-status        enumeration
  |     |   +---ro last-change?       yang:date-and-time
  |     |   +---ro if-index           int32 {if-mib}?
  |     |   +---ro phys-address?      yang:phys-address
  |     |   +---ro higher-layer-if*   interface-ref
  |     |   +---ro lower-layer-if*    interface-ref
  |     |   +---ro speed?            yang:gauge64
  |     |     +---ro statistics
  |     |     |   +---ro discontinuity-time yang:date-and-time
  |     |     |   +---ro in-octets?        yang:counter64
  |     |     |   +---ro in-unicast-pkts?  yang:counter64
  |     |     |   +---ro in-broadcast-pkts? yang:counter64
  |     |     |   +---ro in-multicast-pkts? yang:counter64
  |     |     |   +---ro in-discards?      yang:counter32
  |     |     |   +---ro in-errors?        yang:counter32
  |     |     |   +---ro in-unknown-protos? yang:counter32
  |     |     |   +---ro out-octets?       yang:counter64
  |     |     |   +---ro out-unicast-pkts?  yang:counter64
  |     |     |   +---ro out-broadcast-pkts? yang:counter64
  |     |     |   +---ro out-multicast-pkts? yang:counter64
  |     |     |   +---ro out-discards?      yang:counter32
  |     |     |   +---ro out-errors?        yang:counter32
x---ro interfaces-state
  x---ro interface* [name]
  x---ro name               string
  x---ro type              identityref
  x---ro admin-status       enumeration {if-mib}?
  x---ro oper-status        enumeration
  x---ro last-change?       yang:date-and-time
4.3 Usage of YANG Data Objects

4.3.1 Container ietf-interfaces/interfaces

The data model for interfaces presented in RFC8343 uses a flat list of interfaces (/interfaces/interface). Each interface in the list is identified by its name. Furthermore, each interface has a mandatory "type" leaf.

4.3.2 List ietf-interfaces/interfaces/interface

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The name of the interface. 60802 automation value: for management port interfaces (see 5.2.3) the NameOfStation SHALL be applied; for physical port interfaces the identifier</td>
<td>RFC 2863: The Interfaces Group MIB - ifName</td>
</tr>
<tr>
<td><strong>description</strong></td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>A textual description of the interface. A server implementation MAY map this leaf to the ifAlias MIB object. Such an implementation needs to use some mechanism to handle the differences in size and characters allowed between this leaf and ifAlias. The definition of such a mechanism is outside the scope of this document. Since ifAlias is defined to be stored in non-volatile storage, the MIB implementation MUST map ifAlias to the value of 'description' in the persistently stored configuration.</td>
<td>Original Reference in YANG model: RFC 2863: The Interfaces Group MIB – ifAlias DI Usage reference: RFC-2863: The Interfaces Group MIB - ifDescr</td>
</tr>
<tr>
<td><strong>type</strong></td>
<td>identityref</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The type of the interface.</td>
<td>RFC 2863: The Interfaces Group MIB - ifType</td>
</tr>
<tr>
<td><strong>enabled</strong></td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>This leaf contains the configured, desired state of the interface. Systems that implement the IF-MIB use the value of this leaf in the intended configuration to set IF-MIB.ifAdminStatus to 'up' or 'down' after an ifEntry has been initialized, as described in RFC 2863. Changes in this leaf in the intended configuration are reflected in ifAdminStatus.</td>
<td>RFC 2863: The Interfaces Group MIB - ifAdminStatus</td>
</tr>
<tr>
<td><strong>link-up-down-trap-enable</strong></td>
<td>enumeration</td>
<td>rw</td>
<td>optional</td>
<td>Optional</td>
<td>Controls whether linkUp/linkDown SNMP notifications should be generated for this interface. If this node is not configured, the value 'enabled' is operationally used by the</td>
<td>RFC 2863: The Interfaces Group MIB - ifLinkUpDownTrapEnable</td>
</tr>
</tbody>
</table>
server for interfaces that do not operate on
top of any other interface (i.e., there are no
'lower-layer-if' entries), and 'disabled'
otherwise.

| admin-status | enumeration | ro | mandatory | mandatory | The desired state of the interface.  
This leaf has the same read semantics as ifAdminStatus. | RFC 2863: The Interfaces Group MIB - ifAdminStatus |
| oper-status | enumeration | ro | mandatory | mandatory | The current operational state of the interface.  
This leaf has the same semantics as ifOperStatus. | RFC 2863: The Interfaces Group MIB - ifOperStatus |
| last-change | yang:date-and-time | ro | optional | Optional | The time the interface entered its current operational state.  
If the current state was entered prior to the last re-initialization of the local network management subsystem, then this node is not present. | RFC 2863: The Interfaces Group MIB - ifLastChange |
| if-index | int32 | ro | mandatory | mandatory | The ifIndex value for the ifEntry represented by this interface. | RFC 2863: The Interfaces Group MIB - ifIndex |
| phys-address | yang:phys-address | ro | optional | mandatory | The interface's address at its protocol sub-layer. For example, for an 802.x interface, this object normally contains a Media Access Control (MAC) address. The interface's media-specific modules must define the bit and byte ordering and the format of the value of this object. For interfaces that do not have such an address (e.g., a serial line), this node is not present. | RFC 2863: The Interfaces Group MIB - ifPhysAddress |
| higher-layer-if | list of interface-ref | ro | optional | mandatory | A list of references to interfaces layered on top of this interface. | RFC 2863: The Interfaces Group MIB - ifStackTable |
| lower-layer-if | list of interface-ref | ro | optional | mandatory | A list of references to interfaces layered underneath this interface. | RFC 2863: The Interfaces Group MIB - ifStackTable |
### speed
- **Yang:** gauge64
- **Access:** ro
- **Usage:** optional
- **Mandatory:** mandatory

An estimate of the interface's current bandwidth in bits per second.

For interfaces that do not vary in bandwidth or for those where no accurate estimation can be made, this node should contain the nominal bandwidth.

For interfaces that have no concept of bandwidth, this node is not present.

**RFC 2863: The Interfaces Group MIB - ifSpeed, ifHighSpeed**

---

### 4.3.3 Container Statistics

Each entry in the interface list comprises the container statistics

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>discontinuity-time</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>mandatory</td>
<td>Mandatory</td>
<td>The time on the most recent occasion at which any one or more of this interface's counters suffered a discontinuity. If no such discontinuities have occurred since the last re-initialization of the local management subsystem, then this node contains the time the local management subsystem re-initialized itself.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCInOctets</td>
</tr>
<tr>
<td>in-octets</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The total number of octets received on the interface, including framing characters. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCInOctets</td>
</tr>
<tr>
<td>in-unicast-pkts</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>Optional</td>
<td>The number of packets, delivered by this sub-layer to a higher (sub-)layer, that were not addressed to a multicast or broadcast address at this sub-layer.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCInUcastPkts</td>
</tr>
</tbody>
</table>
Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Type</th>
<th>Access</th>
<th>Required</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>in-broadcast-pkts</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>Optional The number of packets, delivered by this sub-layer to a higher (sub-)layer, that were addressed to a broadcast address at this sub-layer. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCInBroadcastPkts</td>
</tr>
<tr>
<td>in-multicast-pkts</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>Optional The number of packets, delivered by this sub-layer to a higher (sub-)layer, that were addressed to a multicast address at this sub-layer. For a MAC-layer protocol, this includes both Group and Functional addresses. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCInMulticastPkts</td>
</tr>
<tr>
<td>in-discards</td>
<td>yang:counter32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory The number of inbound packets that were chosen to be discarded even though no errors had been detected to prevent their being deliverable to a higher-layer protocol. One possible reason for discarding such a packet could be to free up buffer space. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as</td>
<td>RFC 2863: The Interfaces Group MIB - ifInDiscards</td>
</tr>
<tr>
<td>Counter Name</td>
<td>Type</td>
<td>Access</td>
<td>Status</td>
<td>Description</td>
<td>RFC</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------</td>
</tr>
<tr>
<td>in-errors</td>
<td>yang:counter32</td>
<td>ro</td>
<td>optional</td>
<td>For packet-oriented interfaces, the number of inbound packets that contained errors preventing them from being deliverable to a higher-layer protocol. For character-oriented or fixed-length interfaces, the number of inbound transmission units that contained errors preventing them from being deliverable to a higher-layer protocol. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td>RFC 2863: The Interfaces Group MIB - ifInErrors</td>
</tr>
<tr>
<td>in-unknown-protos</td>
<td>yang:counter32</td>
<td>ro</td>
<td>optional</td>
<td>Optional For packet-oriented interfaces, the number of packets received via the interface that were discarded because of an unknown or unsupported protocol. For character-oriented or fixed-length interfaces that support protocol multiplexing, the number of transmission units received via the interface that were discarded because of an unknown or unsupported protocol. For any interface that does not support protocol multiplexing, this counter is not present. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td>RFC 2863: The Interfaces Group MIB - ifInUnknownProtos</td>
</tr>
<tr>
<td>out-octets</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>mandatory The total number of octets transmitted out of the interface, including framing characters.</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCOutOctets</td>
</tr>
<tr>
<td>out-unicast-pkts</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>Optional</td>
<td>RFC 2863: The Interfaces Group MIB - ifHCOutUcastPkts</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
<td>----</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>Description: The total number of packets that higher-level protocols requested be transmitted and that were not addressed to a multicast or broadcast address at this sub-layer, including those that were discarded or not sent. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>out-broadcast-pkts</th>
<th>yang:counter64</th>
<th>ro</th>
<th>optional</th>
<th>Optional</th>
<th>RFC 2863: The Interfaces Group MIB - ifHCOutBroadcastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: The total number of packets that higher-level protocols requested be transmitted and that were addressed to a broadcast address at this sub-layer, including those that were discarded or not sent. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>out-multicast-pkts</th>
<th>yang:counter64</th>
<th>ro</th>
<th>optional</th>
<th>Optional</th>
<th>RFC 2863: The Interfaces Group MIB - ifHCOutMulticastPkts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description: The total number of packets that higher-level protocols requested be transmitted and that were addressed to a multicast address at this sub-layer, including those that were discarded or not sent. For a MAC-layer protocol, this includes both Group and Functional addresses. Discontinuities in the value of this counter can occur at re-initialization of the</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The number of outbound packets that were chosen to be discarded even though no errors had been detected to prevent their being transmitted. One possible reason for discarding such a packet could be to free up buffer space. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.

Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.

For packet-oriented interfaces, the number of outbound packets that could not be transmitted because of errors. For character-oriented or fixed-length interfaces, the number of outbound transmission units that could not be transmitted because of errors. Discontinuities in the value of this counter can occur at re-initialization of the management system and at other times as indicated by the value of 'discontinuity-time'.

4.4 Augmentation by Module ieee802-dot1q-bridge (IEEE 802.1Qcp/D2-2 and IEEE 802.1Qcw/D1-2)

4.4.1 Additional Container ietf-interfaces/interface/bridge-port

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>bridge-name</strong></td>
<td>leafref</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Used to reference configured Bridge node.</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>-------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>component-name</strong></td>
<td>leafref</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Used to reference configured Component node.</td>
<td></td>
</tr>
<tr>
<td><strong>port-type</strong></td>
<td>identityref</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The port type. Indicates the capabilities of this port.</td>
<td></td>
</tr>
<tr>
<td><strong>pvid</strong></td>
<td>dot1qtypes: vlan-index-type</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The primary (default) VID assigned to a specific Bridge Port.</td>
<td></td>
</tr>
<tr>
<td><strong>default-priority</strong></td>
<td>dot1qtypes: priority-type</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The default priority assigned to a specific Bridge Port.</td>
<td></td>
</tr>
<tr>
<td><strong>priority-regeneration</strong></td>
<td>container, uses dot1qtypes: priority-regeneration-table-grouping</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Priority Regeneration Table parameters associated with a specific Bridge Port. A list of Regenerated User Priorities for each received priority on each port of a Bridge. The regenerated priority value may be used to index the Traffic Class Table for each input port. This only has effect on media that support native priority. The default values for Regenerated User Priorities are the same as the User Priorities</td>
<td></td>
</tr>
<tr>
<td><strong>pcp-selection</strong></td>
<td>dot1qtypes: pcp-selection-type</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Priority Code Point selection assigned to a specific Bridge Port. This object identifies the rows in the PCP encoding and decoding tables that are used to remark frames on this port if this remarking is enabled. Default: “8P0D”</td>
<td></td>
</tr>
<tr>
<td><strong>pcp-decoding-table</strong></td>
<td>container, uses dot1qtypes: pcp-decoding-table-grouping</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Priority Code Point Decoding Table parameters associated with a specific Bridge Port.</td>
<td></td>
</tr>
<tr>
<td>parameter</td>
<td>type</td>
<td>access</td>
<td>default</td>
<td>description</td>
<td>reference</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>-----------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>pcp-encoding-table</td>
<td>container, uses dot1qtpe:pcp-encoding-table-grouping</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Priority Code Point Encoding Table parameters associated with a specific Bridge Port.</td>
<td>12.6.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>use-dei</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Drop Eligible Indicator. If it is set to True, then the drop_eligible parameter is encoded in the DEI of transmitted frames, and the drop_eligible parameter shall be true(1) for a received frame if the DEI is set in the VLAN tag or the Priority Code Point Decoding Table indicates drop_eligible True for the received PCP value. If this parameter is False, the DEI shall be transmitted as zero and ignored on receipt. Default: false</td>
<td>12.6.2 of IEEE Std 802.1Q-2018 6.9.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>drop-encoding</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Drop Encoding parameter. If a Bridge supports encoding or decoding of drop_eligible from the PCP field of a VLAN tag (6.7.3) on any of its Ports, then it shall implement a Boolean parameter Require Drop Encoding on each of its Ports with default value False. If Require Drop Encoding is True and the Bridge Port cannot encode particular priorities with drop_eligible, then frames queued with those priorities and drop_eligible True shall be discarded and not transmitted. Default: false</td>
<td>12.6.2 of IEEE Std 802.1Q-2018 8.6.6 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>service-access-priority-selection</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The Service Access Priority selection. Indication of whether the Service Access Priority Selection function is supported on the Customer Bridge Port to request priority handling of the</td>
<td>12.6.2 of IEEE Std 802.1Q-2018 6.13 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
| service-access-priority | container, uses dot1qtypes:service-access-priority-table-grouping | rw | optional | optional | The Service Access Priority table parameters. A table that contains information about the Service Access Priority Selection function for a Provider Bridge. The use of this table enables a mechanism for a Customer Bridge attached to a Provider Bridged Network to request priority handling of frames. | 12.6.2 of IEEE Std 802.1Q-2018
6.13.1 of IEEE Std 802.1Q-2018 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>traffic-class</td>
<td>container</td>
<td>rw</td>
<td>obsolete!</td>
<td>-</td>
<td>The Traffic Class table parameters. A table mapping evaluated priority to Traffic Class, for forwarding by the Bridge. This container modeled the Traffic Class Table incorrectly, and therefore its status is obsolete. It is replaced by traffic-class-v2.</td>
<td></td>
</tr>
<tr>
<td>traffic-class-v2</td>
<td>container, uses dot1qtypes:traffic-class-table-grouping-v2</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The Traffic Class Table models the operations that can be performed on, or inquire about, the current contents of the Traffic Class Table for a given Port. The default values for the table are specified in IEEE Std 802.1Q-2018 8.6.6 or 34.5.</td>
<td>12.6.3 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
| acceptable-frame       | enumeration                                                   | rw | optional | optional | To configure the Acceptable Frame Types parameter associated with one or more Ports. Default: admit-all-frames | 12.10.1.3 of IEEE Std 802.1Q-2018
6.9 of IEEE Std 802.1Q-2018 |
| enable-ingress-filtering | boolean                                                      | rw | optional | optional | To enable the Ingress Filtering feature associated with one or more Ports. Default: false | 12.10.1.4 of IEEE Std 802.1Q-2018
8.6.2 of IEEE Std 802.1Q-2018 |
<table>
<thead>
<tr>
<th>Enable-restricted-vlan-registration</th>
<th>boolean</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Description</strong></td>
<td>To enable the Restricted VLAN Registration associated with one or more Ports. Default: false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference</strong></td>
<td>11.2.3.2.3 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.10.1.6 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable-vid-translation-table</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>To enable VID Translation table associated with a Bridge Port. This is not applicable to Bridge Ports that do not support a VID Translation Table. Default: false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference</strong></td>
<td>12.10.1.8 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.9 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enable-egress-vid-translation-table</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>To enable Egress VID Translation table associated with a Bridge Port. This is not applicable to Ports that do not support an Egress VID Translation table. Default: false</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference</strong></td>
<td>12.10.1.9 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.9 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protocol-group-vid-set(^5)</td>
<td>list</td>
<td></td>
<td>optional</td>
<td></td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>The list of VID values associated with the Protocol Group Identifier for this port.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference</strong></td>
<td>12.10.1.1.3 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Admin-point-to-point</td>
<td>enumeration</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td><strong>Description</strong></td>
<td>For a port running spanning tree, this object represents the administrative point-to-point status of the LAN segment attached to this port, using the enumeration values of IEEE Std 802.1AC. A value of forceTrue(1) indicates that this port should always be treated as if it is connected to a point-to-point link. A value of forceFalse(2) indicates that this port should be treated as having a shared media connection. A value of auto(3) indicates that this port is considered to have a point-to-point link if it is an</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Reference</strong></td>
<td>12.4.2 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.8.2 of IEEE Std 802.1Q-2018</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^5\) if-feature "port-and-protocol-based-vlan"
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Type</th>
<th>Access</th>
<th>Description</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol-based-vlan-classification</td>
<td>boolean</td>
<td>ro</td>
<td>A boolean indication indicating if Port-and-Protocol-based VLAN classification is supported on a given Port.</td>
<td>5.4.1.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>max-vid-set-entries</td>
<td>uint16</td>
<td>ro</td>
<td>The maximum number of entries supported in the VID set on a given Port.</td>
<td>12.10.1.1.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>port-number</td>
<td>dot1qtypes:port-number-type</td>
<td>ro</td>
<td>An integer that uniquely identifies a Bridge Port.</td>
<td>12.3, item i) of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>address</td>
<td>ieee:mac-address</td>
<td>ro</td>
<td>The specific MAC address of the individual MAC Entity associated with the Port.</td>
<td>12.4.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>capabilities</td>
<td>bits</td>
<td>ro</td>
<td>The feature capabilities associated with port. Indicates the parts of IEEE 802.1Q that are optional on a per-port basis, that are implemented by this device, and that are manageable.</td>
<td>12.10.1.1.3, item c) of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>type-capabilities</td>
<td>bits</td>
<td>ro</td>
<td>The type of feature capabilities supported with port. Indicates the capabilities of this port.</td>
<td>12.4.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>external</td>
<td>boolean</td>
<td>ro</td>
<td>A boolean indicating whether the port is external. A value of True means the port is external. A value of False means the port is internal.</td>
<td>12.4.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>oper-point-to-point</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>For a port running spanning tree, this object represents the operational point-to-point status of the LAN segment attached to this port. It indicates whether a port is considered to have a point-to-point connection. If admin-point-to-point is set to auto(2), then the value of oper-point-to-point is determined in accordance with the specific procedures defined for the MAC entity concerned, as defined in IEEE Std 802.1AC. The value is determined dynamically; that is, it is re-evaluated whenever the value of admin-point-to-point changes, and whenever the specific procedures defined for the MAC entity evaluate a change in its point-to-point status.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### statistics

<table>
<thead>
<tr>
<th>statistics</th>
<th>container</th>
<th>ro</th>
<th>optional</th>
<th>mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Container of operational state node information associated with the bridge port.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### 4.5 Augmentation by Module ieee802-dot1cb-stream-identification (IEEE 802.1CBcv)

#### 4.5.1 Additional Container ietf-interfaces/interface/statistics/stream-id

This container contains the per-port as well as the per-port-per-stream counters for stream identification.

#### 4.5.1.1 Container ietf-interfaces/interface/statistics/stream-id/per-port-counters

Contains the per-port counters for stream identification. The following counters are instantiated for each port on which the Stream identification function is configured. The counters are indexed by port number.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
</table>
The `tsnCpSidInputPackets` counter is incremented once for each packet identified by any Stream identification function on this port. Its value equals the sum (modulo the size of the counters) of all of the `tsnCpsSidInputPackets` counters on this same port.

The `tsnCpSidOutputPackets` counter is incremented once for each packet passed down the stack by any Stream identification function on this port. Its value equals the sum (modulo the size of the counters) of all of the `tsnCpsSidOutputPackets` counters on this same port.

### 4.5.1.2 List `ietf-interfaces/interface/statistics/stream-id/per-port-per-stream-counters`

Contains the per-port-per-stream counters for stream identification. The following counters are instantiated for each port on which the Stream identification function is configured. The counters are indexed by port number, facing (in-facing or out-facing), and stream_handle value (tsnStreamIdHandle).

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>direction-out-facing</td>
<td>dot1cb-sid-types:direction</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>An object indicating whether the counters apply to out-facing (True) or in-facing (False).</td>
<td>-</td>
</tr>
<tr>
<td>handle</td>
<td>leafref -&gt; /stream-identity/handle</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The according tsnStreamIdHandle for these counters.</td>
<td>-</td>
</tr>
<tr>
<td>input-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The <code>tsnCpsSidInputPackets</code> counter is incremented once for each packet identified by the Stream identification function.</td>
<td>9.2.1 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>output-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The <code>tsnCpsSidOutputPackets</code> counter is incremented once for each packet.</td>
<td>9.2.2 of IEEE Std 802.1CB-2017</td>
</tr>
</tbody>
</table>
4.6 Augmentation by Module ieee802-dot1cb-frer (IEEE 802.1CBcv)

4.6.1 Additional Container ietf-interfaces/interface/statistics/frer

This container contains the per-port as well as the per-port-per-stream counters for frame replication and elimination for reliability.

4.6.1.1 Container ietf-interfaces/interface/statistics/frer/per-port-counters

Contains the per-port counters for frame replication and elimination for reliability. The following counters are instantiated for each port on which any of the Stream identification function, Sequencing function, or Sequence encode/decode function is configured. The counters are indexed by port number.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx-passed-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpSeqRcvyPassedPackets counter is incremented once for each packet passed up the stack by the VectorRecoveryAlgorithm or MatchRecoveryAlgorithm. Its value equals the sum (modulo the size of the counters) of all of the frerCpsSeqRcvyPassedPackets counters on this same port.</td>
<td>10.9.1 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-discarded-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpSeqRcvyDiscardPackets counter is incremented once for each packet discarded due to a duplicate sequence number or for being a rogue packet by any VectorRecoveryAlgorithm or MatchRecoveryAlgorithm on this port. Its value equals the sum (modulo the size of the counters) of all of the frerCpsSeqRcvyRoguePackets and frerCpsSeqRcvyRoguePkts counters on this same port.</td>
<td>10.9.2 of IEEE Std 802.1CB-2017</td>
</tr>
</tbody>
</table>
The `frerCpsSeqEncErroredPackets` counter is incremented once each time the Sequence encode/decode function receives a packet that it is unable to decode successfully. Its value equals the sum (modulo the size of the counters) of all of the `frerCpsSeqEncErroredPackets` counters on this same port.

### 4.6.1.2 List `ietf/interfaces/interface/statistics/frer/per-port-per-stream-counters`

Contains the per-port-per-stream counters for frame replication and elimination for reliability. The following counters are instantiated for each port on which any of the Stream identification function, Sequencing function, or Sequence encode/decode function is configured. The counters are indexed by port number, facing (in-facing or out-facing), and stream_handle value.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>direction-out-facing</td>
<td>dot1cb-sid-types:direction</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>An object indicating whether the counters apply to out-facing (True) or in-facing (False).</td>
<td>10.8.2 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>handle</td>
<td>leafref /dot1cb-sid:stream-identity/dot1cb-sid:handle</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The according tsnStreamIdHandle for the counters.</td>
<td></td>
</tr>
<tr>
<td>generation-reset</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The <code>frerCpsSeqGenResets</code> counter is incremented each time the SequenceGenerationReset function is called.</td>
<td>10.8.2 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-out-of-order-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The <code>frerCpsSeqRcvyOutOfOrderPackets</code> counter is incremented once for each</td>
<td>10.8.3 of IEEE Std 802.1CB-2017</td>
</tr>
</tbody>
</table>
packet accepted out-of-order by the VectorRecoveryAlgorithm or MatchRecoveryAlgorithm. Out-of-order means that the packet’s sequence number is not one more than the previous packet received.

<table>
<thead>
<tr>
<th>Field</th>
<th>Type</th>
<th>Access</th>
<th>Default</th>
<th>Description</th>
<th>Std</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx-rogue-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>The <code>frerCpsSeqRcvyRoguePackets</code> counter is incremented once for each packet discarded by the VectorRecoveryAlgorithm because its sequence_number subparameter is more than <code>frerSeqRcvyHistoryLength</code> from RecovSeqNum.</td>
<td>10.8.4 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-passed-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>The <code>frerCpsSeqRcvyPassedPackets</code> counter is incremented once for each packet passed up the stack by the VectorRecoveryAlgorithm or MatchRecoveryAlgorithm.</td>
<td>10.8.5 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-discarded-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>The <code>frerCpsSeqRcvyDiscardedPackets</code> counter is incremented once for each packet discarded due to a duplicate sequence number by the VectorRecoveryAlgorithm or MatchRecoveryAlgorithm.</td>
<td>10.8.6 of IEEE Std 802.1CB-2017</td>
</tr>
</tbody>
</table>
| rx-lost-pkts   | uint64   | ro     | optional| The `frerCpsSeqRcvyLostPackets` counter is incremented once for each packet lost by the VectorRecoveryAlgorithm. A packet is counted as lost if its sequence number is not received on any ingress port.

NOTE—If per-source sequence numbering is used, `frerCpsSeqRcvyLostPackets` can count, as lost, packets that were sent to another destination, but not lost. | 10.8.7 of IEEE Std 802.1CB-2017 |
<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx-tagless-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpsSeqRcvyTaglessPackets counter is incremented once for each packet received by the VectorRecoveryAlgorithm that has no sequence_number subparameter.</td>
<td>10.8.8 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-resets</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpsSeqRcvyResets counter is incremented once each time the SequenceRecoveryReset function is called.</td>
<td>10.8.9 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>rx-latent-error-resets</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpsSeqRcvyLatentErrorResets counter is incremented once each time the LatentErrorReset function is called.</td>
<td>10.8.10 of IEEE Std 802.1CB-2017</td>
</tr>
<tr>
<td>encode-errored-pkts</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The frerCpsSeqEncErroredPackets counter is incremented once each time the Sequence encode/decode function receives a packet that it is unable to decode successfully.</td>
<td>10.8.11 of IEEE Std 802.1CB-2017</td>
</tr>
</tbody>
</table>

### 4.7 Augmentation by IEEE 802.3.2

#### 4.7.1 Container ietf-interfaces/interface/ethernet

This container contains all Ethernet interface related configuration.
### Table

<table>
<thead>
<tr>
<th>speed</th>
<th>eth-if-speed-type</th>
<th>rw</th>
<th>optional</th>
<th>mandatory</th>
<th>Operational speed (data rate) of the Ethernet interface. The default value is implementation-dependent.</th>
</tr>
</thead>
<tbody>
<tr>
<td>flow-control</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Holds the different types of Ethernet PAUSE frame based flow control that can be enabled.</td>
</tr>
<tr>
<td>max-frame-length</td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>This indicates the MAC frame length (including FCS bytes) at which frames are dropped for being too long. (IEEE Std 802.3, 30.3.1.1.37 aMaxFrameLength)</td>
</tr>
<tr>
<td>mac-control-extension-control</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>A value that identifies the current EXTENSION MAC Control function, as specified in IEEE Std 802.3, Annex 31C. (IEEE Std 802.3, 30.3.8.3 aEXTENSIONMACCtrlStatus)</td>
</tr>
<tr>
<td>frame-limit-slow-protocol</td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The maximum number of Slow Protocol frames of a given subtype that can be transmitted in a one second interval. (IEEE Std 802.3, 30.3.1.1.38 aSlowProtocolFrameLimit)</td>
</tr>
<tr>
<td>capabilities</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Container all Ethernet interface specific capabilities.</td>
</tr>
<tr>
<td>statistics</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Contains statistics specific to Ethernet interfaces.</td>
</tr>
</tbody>
</table>

### 4.8 Augmentation by Module ieee802-dot1q-sched

#### 4.8.1 Container ietf-interfaces/interface/bridge-port/gate-parameter-table

This container augments bridge-port with Scheduled Traffic configuration.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>queue-max-sdu-table</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>A list containing a set of max SDU parameters, one for each traffic class.</td>
<td>12.29.1.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td><strong>gate-enabled</strong></td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The GateEnabled parameter determines whether traffic scheduling is active (true) or inactive (false).</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------------------------------------------------------------------------------</td>
<td></td>
</tr>
<tr>
<td><strong>admin-gate-states</strong></td>
<td>uint8</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>AdminGateStates is the administrative value of the initial gate states for the Port.</td>
<td></td>
</tr>
<tr>
<td><strong>oper-gate-states</strong></td>
<td>uint8</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>OperGateStates is the operational value of the current gate states for the Port.</td>
<td></td>
</tr>
<tr>
<td><strong>admin-control-list</strong></td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>AdminControlList is the administrative value of the gate control list for the Port.</td>
<td></td>
</tr>
<tr>
<td><strong>oper-control-list</strong></td>
<td>list</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>OperControlList is the operational value of the gate control list for the Port.</td>
<td></td>
</tr>
<tr>
<td>admin-cycle-time</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>AdminCycleTime specifies the administrative value of the gating cycle time for the Port.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018  8.6.8.4 of IEEE Std 802.1Q-2018  8.6.9.4.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>------------------</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>---------------------------------</td>
<td>---------------------------------------------------------------</td>
</tr>
<tr>
<td>oper-cycle-time</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>OperCycleTime specifies the operational value of the gating cycle time for the Port.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018  8.6.8.4 of IEEE Std 802.1Q-2018  8.6.9.4.20 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>admin-cycle-time-extension</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>An unsigned integer number of nanoseconds, defining the maximum amount of time by which the gating cycle for the Port is permitted to be extended when a new cycle configuration is being installed. This is the administrative value.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018  8.6.9.4.4 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>oper-cycle-time-extension</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>An unsigned integer number of nanoseconds, defining the maximum amount of time by which the gating cycle for the Port is permitted to be extended when a new cycle configuration is being installed. This is the operational value.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018  8.6.9.4.21 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>admin-base-time</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The administrative value of the base time at which gating cycles begin, expressed as an IEEE 1588 precision time protocol (PTP) timescale.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018  8.6.9.4.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>oper-base-time</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The operational value of the base time at which gating cycles begin, expressed</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>Config-Changing Parameter</td>
<td>Data Type</td>
<td>Writeable</td>
<td>Optional</td>
<td>Mandatory</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>as an IEEE 1588 precision time protocol (PTP) timescale.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.6.9.4.18 of IEEE Std 802.1Q-2018</td>
<td></td>
</tr>
<tr>
<td>config-change</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The ConfigChange parameter signals the start of a configuration change when it is set to TRUE, indicating that the administrative parameters for the Port are ready to be copied into their corresponding operational parameters. This should only be done when the various administrative parameters are all set to appropriate values.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>config-change-time</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The time at which the next config change is scheduled to occur.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>tick-granularity</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The granularity of the cycle time clock, represented as an unsigned number of tenths of nanoseconds.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>current-time</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The current time as maintained by the local system.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>config-pending</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The value of the ConfigPending state machine variable. The value is TRUE if a configuration change is in progress but has not yet completed.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>config-change-error</td>
<td>yang:counter64</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>A counter of the number of times that a re-configuration of the traffic schedule has been requested with the old schedule still running and the requested base time was in the past.</td>
<td>12.29.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>supported-list-max</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum value supported by this Port for the AdminControlListLength</td>
<td>12.29.1.5 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
and OperControlListLength parameters. It is available for use by schedule computation software to determine the port’s control list capacity prior to computation. The object may optionally be read-only.

<table>
<thead>
<tr>
<th>supported-cycle-max</th>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>mandatory</th>
<th>The maximum value supported by this Port of the AdminCycleTime and OperCycleTime parameters. The object may optionally be read-only.</th>
</tr>
</thead>
<tbody>
<tr>
<td>supported-interval-max</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum value supported by this Port of the TimeIntervalValue parameter. The object may optionally be read-only.</td>
</tr>
</tbody>
</table>

| 4.9 Augmentation by Module ieee802-dot1q-preemption |

| 4.9.1 Container ietf-interfaces/interface/bridge-port/frame-preemption-parameters |

This container augments bridge-port with Frame Preemption configuration.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>frame-preemption-status-table</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The framePreemptionStatusTable consists of 8 framePreemptionAdminStatus values, one per priority</td>
<td>12.30.1.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>hold-advance</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The value of the holdAdvance parameter for the Port in nanoseconds. There is no default value; the holdAdvance is a property of the underlying MAC.</td>
<td>12.30.1.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>release-advance</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The value of the releaseAdvance parameter for the Port in nanoseconds.</td>
<td>12.30.1.3 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
There is no default value; the releaseAdvance is a property of the underlying MAC.

<table>
<thead>
<tr>
<th>preemption-active</th>
<th>boolean</th>
<th>ro</th>
<th>optional</th>
<th>mandatory</th>
<th>NULL</th>
<th>TRUE if preemption is both supported by the MAC and currently active.</th>
<th>12.30.1.4 of IEEE Std 802.1Q-2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>hold-request</td>
<td>enumeration</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>NULL</td>
<td>The value of the holdRequest parameter for the Port.</td>
<td>12.30.1.5 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
5 Bridges and Bridged Networks (ieee802-dot1q-bridge)

5.1 Overview

The Bridges and Bridged Networks model is defined in IEEE P802.1Qcp/D2.2 Clause 48 and IEEE P802.1Qcw/D1.2 Clause 48.

5.1.1 Main Features

The module ieee802-dot1q-bridge comprises the feature-definitions listed in this section. It is optional for a server to support features, so these functionalities are optional in the YANG tree.

5.1.1.1 Feature ingress-filtering

Each Port may support an Enable Ingress Filtering parameter. A frame received on a Port that is not in the member set (8.8.10) associated with the frames VID shall be discarded if this parameter is set. The default value for this parameter is reset, i.e., Disable Ingress Filtering, for all Ports. Any Port that supports setting this parameter shall also support resetting it. The parameter may be configured by the management operations defined in IEEE 802.1Q Clause 12.


This feature is optional in 60802.

5.1.1.2 Feature extended-filtering-services

Extended Filtering Services support the filtering behavior required for regions of a network in which potential recipients of multicast frames exist, and where both the potential recipients of frames and the Bridges are able to support dynamic configuration of filtering information for group MAC addresses. In order to integrate this extended filtering behavior with the needs of regions of the network that support only Basic Filtering Services, Bridges that support Extended Filtering Services can be statically and dynamically configured to modify their filtering behavior on a per-group MAC address basis, and also on the basis of the overall filtering service provided by each outbound Port with regard to multicast frames. The latter capability permits configuration of the Ports default forwarding or filtering behavior with regard to group MAC addresses for which no specific static or dynamic filtering information has been configured.

Reference: 8.8.4 of IEEE Std 802.1Q-2018, Clause 10 of IEEE Std 802.1Q-2018

This feature is optional in 60802.

5.1.1.3 Feature port-and-protocol-based-vlan

A VLAN-aware bridge component implementation in conformance to the provisions of this standard for Port-and-Protocol-based VLAN classification (5.4.1) shall 1) Support one or more of the following Protocol Classifications and Protocol Template formats: Ethernet, RFC_1042, SNAP_8021H, SNAP_Other, or LLC_Other (6.12); and may 2) Support configuration of the contents of the Protocol Group Database.

Reference: 5.4.1.2 of IEEE Std 802.1Q-2018
This feature is not required in 60802.

5.1.1.4 Feature flow-filtering

Flow filtering support enables Bridges to distinguish frames belonging to different client flows and to use this information in the forwarding process. Information related to client flows may be used at the boundary of an SPT Domain to generate a flow hash value. The flow hash, carried in an F-TAG, serves to distinguish frames belonging to different flows and can be used in the forwarding process to distribute frames over equal cost paths. This provides for finer granularity load spreading while maintaining frame order for each client flow.

Reference: 44.2 of IEEE Std 802.1Q-2018

This feature is not required in 60802.

5.1.1.5 Feature simple-bridge-port

A simple bridge port allows underlying (MAC) layers to share the same Interface as the Bridge Port.

This feature is not required in 60802.

5.1.1.6 Feature flexible-bridge-port

A flexible bridge port supports an Interface that is a Bridge Port to be a separate Interface from the underlying (MAC) layer.

This feature is not required in 60802.

5.2 Tree Diagram

```yang
module: ieee802-dot1q-bridge
 +--rw bridges
 +--rw bridge* [name]
 +--rw name dot1qtypes:name-type
 +--rw address ieee:mac-address
 +--rw bridge-type identityref
 +--ro ports? uint16
 +--ro up-time? yang:zero-based-counter32
 +--ro components? uint32
 +--rw component* [name]
 +--rw name string
 +--rw id? uint32
 +--rw type identityref
 +--rw address? ieee:mac-address
 +--rw traffic-class-enabled? boolean
 +--ro ports? uint16
 +--ro bridge-port* if:interface-ref
```
---ro capabilities
 |  ---ro extended-filtering? boolean
 |  ---ro traffic-classes? boolean
 |  ---ro static-entry-individual-port? boolean
 |  ---ro ivl-capable? boolean
 |  ---ro svl-capable? boolean
 |  ---ro hybrid-capable? boolean
 |  ---ro configurable-pvid-tagging? boolean
 |  ---ro local-vlan-capable? boolean
---rw filtering-database
 |  ---rw aging-time? uint32
 |  ---ro size? yang:gauge32
 |  ---ro static-entries? yang:gauge32
 |  ---ro dynamic-entries? yang:gauge32
 |  ---ro static-vlan-registration-entries? yang:gauge32
 |  ---ro dynamic-vlan-registration-entries? yang:gauge32
 |  ---ro mac-address-registration-entries? yang:gauge32 {extended-filtering-services}?
 |  ---rw filtering-entry* [database-id vids address]
 |  |  ---rw database-id uint32
 |  |  ---rw address ieee:mac-address
 |  |  ---rw vids dot1qtypes:vid-range-type
 |  |  ---rw entry-type? enumeration
 |  |  ---rw port-map* [port-ref]
 |  |  |  ---rw port-ref port-number-type
 |  |  |  ---rw (map-type)?
 |  |  |  |  ---:(static-filtering-entries)
 |  |  |  |  |  ---rw static-filtering-entries
 |  |  |  |  |  |  ---rw control-element? enumeration
 |  |  |  |  |  |  ---rw connection-identifier? port-number-type
 |  |  |  |  |  ---:(static-vlan-registration-entries)
 |  |  |  |  |  ---rw static-vlan-registration-entries
 |  |  |  |  |  |  ---rw registrar-admin-control? enumeration
 |  |  |  |  |  |  ---rw vlan-transmitted? enumeration
 |  |  |  |  |  ---:(mac-address-registration-entries)
 |  |  |  |  |  ---rw mac-address-registration-entries
 |  |  |  |  |  |  ---rw control-element? enumeration
 |  |  |  |  |  ---:(dynamic-vlan-registration-entries)
 |  |  |  |  |  ---rw dynamic-vlan-registration-entries
 |  |  |  |  |  |  ---rw control-element? enumeration
 |  |  |  |  |  ---:(dynamic-reservation-entries)
rw dynamic-reservation-entries
   rw control-element? enumeration
   (dynamic-filtering-entries)
      rw dynamic-filtering-entries
      rw control-element? enumeration
   ro status? enumeration
   rw vlan-registration-entry* [database-id vids]
      rw database-id uint32
      rw vids dot1qtypes:vid-range-type
      rw entry-type? enumeration
   rw port-map* [port-ref]
      rw port-ref port-number-type
      (map-type)?
      static-filtering-entries
         rw control-element? enumeration
         connection-identifier? port-number-type
      vlan-registration-entries
         rw registrar-admin-control? enumeration
         rw vlan-transmitted? enumeration
      mac-address-registration-entries
         rw mac-address-registration-entries
         rw control-element? enumeration
      dynamic-vlan-registration-entries
         rw control-element? enumeration
      dynamic-reservation-entries
         rw control-element? enumeration
      dynamic-filtering-entries
         rw control-element? enumeration
   permanent-database
      ro size? yang:gauge32
      static-entries? yang:gauge32
      static-vlan-registration-entries? yang:gauge32
      filtering-entry* [database-id vids address]
         rw database-id uint32
         rw address ieee:mac-address
++rw vids               dot1qtypes:vid-range-type
++ro status?           enumeration
++rw port-map* [port-ref]
  ++rw port-ref         port-number-type
  ++rw (map-type)?
    +-(static-filtering-entries)
      ++rw control-element?  enumeration
      ++rw connection-identifier? port-number-type
    +-(static-vlan-registration-entries)
      ++rw static-vlan-registration-entries
      ++rw vlan-transmitted?  enumeration
    +-(mac-address-registration-entries)
      ++rw mac-address-registration-entries
      ++rw control-element?  enumeration
    +-(dynamic-vlan-registration-entries)
      ++rw dynamic-vlan-registration-entries
      ++rw control-element?  enumeration
    +-(dynamic-reservation-entries)
      ++rw dynamic-reservation-entries
      ++rw control-element?  enumeration
    +-(dynamic-filtering-entries)
      ++rw dynamic-filtering-entries
      ++rw control-element?  enumeration
++rw bridge-vlan
  ++ro version?           uint16
  ++ro max-vids?          uint16
  ++ro override-default-pvid? boolean
  ++ro protocol-template? dot1qtypes:protocol-frame-format-type {port-and-protocol-based-vlan}?
  ++ro max-msti?          uint16
  ++rw vlan* [vid]
    ++rw vid               dot1qtypes:vlan-index-type
    ++rw name?             dot1qtypes:name-type
    ++ro untagged-ports*   if:interface-ref
    ++ro egress-ports*     if:interface-ref
    ++rw protocol-group-database* [db-index] {port-and-protocol-based-vlan}?
      ++rw db-index        uint16
    ++rw frame-format-type? dot1qtypes:protocol-frame-format-type
    ++rw (frame-format)?
augment /if:interfaces/if:interface:
  +--rw bridge-port
    +--rw bridge-name? -> /bridges/bridge/name
    +--rw component-name? -> /bridges/bridge[dot1q:name=current()]/../bridge-name]/component/name
    +--rw port-type? identityref
    +--rw pvid? dot1qtypes:vlan-index-type
    +--rw default-priority? dot1qtypes:priority-type
    +--rw priority-regeneration
      | +--rw priority0? priority-type
      | +--rw priority1? priority-type
      | +--rw priority2? priority-type
      | +--rw priority3? priority-type
| +--rw priority4?   priority-type
| +--rw priority5?   priority-type
| +--rw priority6?   priority-type
| +--rw priority7?   priority-type
| +--rw priority0?   priority-type
| +--rw priority1?   priority-type
| +--rw priority2?   priority-type
| +--rw priority3?   priority-type
| +--rw priority4?   priority-type
| +--rw priority5?   priority-type
| +--rw priority6?   priority-type
| +--rw priority7?   priority-type

| +--rw pcp-selection?       dot1qtypes:pcp-selection-type

| +--rw pcp-decoding-table
| +--rw pcp-decoding-map* [pcp]
| | +--rw pcp                pcp-selection-type
| | | +--rw priority-map* [priority-code-point]
| | | | +--rw priority-code-point     priority-type
| | | | +--rw priority?             priority-type
| | | +--rw drop-eligible?        boolean

| +--rw pcp-encoding-table
| +--rw pcp-encoding-map* [pcp]
| | +--rw pcp                pcp-selection-type
| | | +--rw priority-map* [priority dei]
| | | | +--rw priority        priority-type
| | | | +--rw dei              boolean
| | | +--rw priority-code-point? priority-type

| +--rw use-dei?        boolean
| +--rw drop-encoding?    boolean

| +--rw service-access-priority-selection?        boolean

| +--rw service-access-priority
| +--rw priority0?   priority-type
| +--rw priority1?   priority-type
| +--rw priority2?   priority-type
| +--rw priority3?   priority-type
| +--rw priority4?   priority-type
| +--rw priority5?   priority-type
| +--rw priority6?   priority-type
| +--rw priority7?   priority-type

| +--rw traffic-class
| +--rw traffic-class-map* [priority]
| | +--rw priority     priority-type
| | | +--rw available-traffic-class* [num-traffic-class]
| | | | +--rw num-traffic-class       uint8
| | | +--rw traffic-class?         traffic-class-type

| +--rw traffic-class-v2
| | +--rw traffic-class-table
| | | +--rw number-of-traffic-classes?    uint8
| +++rw priority0? traffic-class-type |
| +++rw priority1? traffic-class-type |
| +++rw priority2? traffic-class-type |
| +++rw priority3? traffic-class-type |
| +++rw priority4? traffic-class-type |
| +++rw priority5? traffic-class-type |
| +++rw priority6? traffic-class-type |
| +++rw priority7? traffic-class-type |
| +rw acceptable-frame? enumeration |
| ++rw enable-ingress-filtering? boolean |
| ++rw enable-restricted-vlan-registration? boolean |
| ++rw enable-vid-translation-table? boolean |
| ++rw enable-egress-vid-translation-table? boolean |
| ++rw protocol-group-vid-set* [group-id] (port-and-protocol-based-vlan)? |
| +++rw group-id uint32 |
| +++rw vid* dot1qtypes:vlanid |
| +rw admin-point-to-point? boolean |
| ++rw protocol-based-vlan-classification? boolean (port-and-protocol-based-vlan)? |
| ++ro max-vid-set-entries? uint16 (port-and-protocol-based-vlan)? |
| ++ro port-number? dot1qtypes:port-number-type |
| ++ro address? ieee:mac-address |
| ++ro capabilities? bits |
| ++ro type-capabilities? bits |
| ++ro external? boolean |
| ++ro oper-point-to-point? boolean |
| ++ro media-dependent-overhead? uint8 |
| ++ro statistics |
| +++ro delay-exceeded-discards? yang:counter64 |
| +++ro mtu-exceeded-discards? yang:counter64 |
| +++ro frame-rx? yang:counter64 |
| +++ro octets-rx? yang:counter64 |
| +++ro frame-tx? yang:counter64 |
| +++ro octets-tx? yang:counter64 |
| +++ro discard-inbound? yang:counter64 |
| +++ro forward-outbound? yang:counter64 |
| +++ro discard-lack-of-buffers? yang:counter64 |
| +++ro discard-transit-delay-exceeded? yang:counter64 |
| +++ro discard-on-error? yang:counter64 |
| +++ro discard-on-ingress-filtering? yang:counter64 (ingress-filtering)? |
| +++rw vid-translations* [local-vid] |
5.3 Usage of YANG Data Objects

5.3.1 Container iee802-dot1q-bridge/bridges

The data model for interfaces uses a flat list of bridges ("/bridges/bridge"). Each bridge in the list is identified by its name.

5.3.2 List iee802-dot1q-bridge/bridges/bridge

Provides configuration data in support of the Bridge Configuration resources. There is a single bridge data node per Bridge.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>dot1qtypes:name-type</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>A text string associated with the Bridge, of locally determined significance.</td>
<td>12.4 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>address</td>
<td>iee:mac-address</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The MAC address for the Bridge from which the Bridge Identifiers used by the STP, RSTP, and MSTP are derived.</td>
<td>12.4 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>bridge-type</td>
<td>type-of-bridge</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The type of Bridge.</td>
<td>-</td>
</tr>
<tr>
<td>ports</td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Bridge Ports (MAC Entities)</td>
<td>12.4 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>up-time</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The count in seconds of the time elapsed since the Bridge was last reset or initialized.</td>
<td>12.4 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>components</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of components associated with the Bridge.</td>
<td>-</td>
</tr>
<tr>
<td>component</td>
<td>list (see 5.3.3)</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The set of components associated with a given Bridge. For example, - A TPMR is associated with a single VLAN unaware component. - A Customer VLAN Bridge</td>
<td>12.3 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
is associated with a single VLAN aware component. - A Provider Bridge is associated with a single S-VLAN component and zero or more C-VLAN components.

### 5.3.3 List `ieee802-dot1q-bridge/bridges/bridge/component`

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The name of the Component.</td>
<td>-</td>
</tr>
<tr>
<td>id</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Unique identifier for a particular Bridge component within the system. 12.3, item l) of IEEE Std 802.1Q-2018</td>
<td>12.3, item l) of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>type</td>
<td>type-of-component</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The type of component used to classify a particular Bridge component within a Bridge system comprising multiple components. 12.3, item m) of IEEE Std 802.1Q-2018</td>
<td>12.3, item m) of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>traffic-class-enabled</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Indication of Traffic Classes enablement associated with the Bridge Component. A value of True indicates that Traffic Classes are enabled on this Bridge Component. A value of False indicates that the Bridge Component operates with a single priority level for all traffic. 12.4.1.5.1 of IEEE Std 802.1Q-2018</td>
<td>12.4.1.5.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>ports</td>
<td>uint16 (range &quot;1..4095&quot;)</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Bridge Ports associated with the Bridge Component. 12.4.1.1.3, item c) of IEEE Std 802.1Q-2018</td>
<td>12.4.1.1.3, item c) of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>bridge-port</td>
<td>leaf-list if:interface-ref</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>List of bridge-port references.</td>
<td>-</td>
</tr>
<tr>
<td>capabilities</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Array of Boolean values of the feature capabilities associated with a given Bridge Component.</td>
<td>12.10.1.3, item b) of IEEE Std 802.1Q-2018 12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>------------------------------------------------------------------------------------------</td>
<td>----------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>filtering-database</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Contains filtering information used by the Forwarding Process in deciding through which Ports of the Bridge frames should be forwarded.</td>
<td>12.7 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>permanent-database</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The Permanent Database container models the operations that can be performed on, or affect, the Permanent Database. There is a single Permanent Database per FDB.</td>
<td>-</td>
</tr>
<tr>
<td>bridge-vlan</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The Bridge VLAN container models configuration information that modify, or inquire about, the overall configuration of the Bridges VLAN resources. There is a single Bridge VLAN Configuration managed object per Bridge.</td>
<td>12.10 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>bridge-mst</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The Bridge MST container models configuration information that modify, or inquire about, the overall configuration of the Bridges MST resources.</td>
<td>12.12 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

5.3.4 Container ieee802-dot1q-bridge/bridges/bridge/component/capabilities

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>extended-filtering</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Can perform filtering on individual multicast addresses controlled by MMRP.</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>traffic-classes</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Can map priority to multiple traffic classes</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>static-entry-individual-port</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Static entries per port.</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>----</td>
<td>----------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>ivl-capable</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Independent VLAN Learning (IVL).</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>svl-capable</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Shared VLAN Learning (SVL).</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>hybrid-capable</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Both IVL and SVL simultaneously.</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>configurable-pvid-tagging</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Whether the implementation supports the ability to override the default PVID setting and its egress status (VLAN-tagged or Untagged) on each port.</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>local-vlan-capable</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Can support multiple local Bridges, outside the scope of 802.1Q defined VLANs.</td>
<td>12.4.1.5.2 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

### 5.3.5 Container ieee802-dot1q-bridge/bridges/bridge/component/filtering-database

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>aging-time</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The timeout period in seconds for aging out dynamically-learned forwarding information.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>size</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum number of entries that can be held in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>static-entries</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Static Filtering entries currently in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.1 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>dynamic-entries</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Dynamic Filtering entries currently in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>static-vlan-registration-entries</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Static VLAN Registration entries currently in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.2 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>
### Dynamic VLAN Registration Entries

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>dynamic-vlan-registra</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Dynamic VLAN Registration entries currently in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.5 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

### MAC Address Registration Entries

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mac-address-registra</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of MAC Address Registration entries currently in the FDB.</td>
<td>12.7 of IEEE Std 802.1Q-2018 8.8.4 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

### Filtering Entry

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtering-entry</td>
<td>list</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Information for the entries associated with the Permanent Database.</td>
<td>-</td>
</tr>
</tbody>
</table>

### VLAN Registration Entry

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>vlan-registration-en</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The VLAN Registration Entries models the operations that can be performed on a single VLAN Registration Entry in the FDB. The set of VLAN Registration Entries within the FDB changes under management control and also as a result of MVRP exchanges.</td>
<td>12.7.5 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

### 5.3.6 Container ieee802-dot1q-bridge/bridges/bridge/component/permanent-database

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>size</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum number of entries that can be held in the FDB.</td>
<td>12.7.6 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>static-entries</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Static Filtering entries currently in the FDB.</td>
<td>12.7.6 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>static-vlan-registra</td>
<td>yang:gauge32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of Static VLAN Registration entries currently in the FDB.</td>
<td>12.7.6 of IEEE Std 802.1Q-2018</td>
</tr>
</tbody>
</table>

### Filtering Entry

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>filtering-entry</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Information for the entries associated with the Permanent Database.</td>
<td>-</td>
</tr>
</tbody>
</table>

---

6 if-feature "extended-filtering-services"
### 5.3.7 Container ieee802-dot1q-bridge/bridges/bridge/component/bridge-vlan

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>version</td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The version number supported.</td>
<td>12.10.1.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>max-vids</td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum number of VIDs supported.</td>
<td>12.10.1.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>override-default-pvid</td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Indicates if the default PVID can be overridden, and its egress status (VLAN-tagged or untagged) on each port.</td>
<td>12.10.1.3 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>protocol-template</td>
<td>dot1qtypes:protocol-frame-format-type</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The data-link encapsulation format or the detagged_frame_type in a Protocol Template</td>
<td>12.10.1.7 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>max-msti</td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum number of MSTIs supported within an MST region (i.e., the number of spanning tree instances that can be supported in addition to the CIST), for MST Bridges. For SST Bridges, this parameter may be either omitted or reported as 0.</td>
<td>12.10.1.7 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>vlan</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>List of VLAN related configuration nodes associated with the Bridge.</td>
<td>12.10.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>protocol-group-database</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>List of the protocol group database entries.</td>
<td>12.10.1.7 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>vid-to-fid-allocation</td>
<td>list</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>This list allows inquiries about VID to FID allocations.</td>
<td></td>
</tr>
</tbody>
</table>

---

7 if-feature "port-and-protocol-based-vlan"

8 if-feature "port-and-protocol-based-vlan"
### 5.3.8 Container ieee802-dot1q-bridge/bridges/bridge/component/bridge-mst

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mstid</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The list of MSTID values that are currently supported by the Bridge.</td>
<td>-</td>
</tr>
<tr>
<td>fid-to-mstid</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The FID to MSTID allocation table.</td>
<td>12.12.2 of IEEE Std 802.1Q-2018</td>
</tr>
<tr>
<td>fid-to-mstid-</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The FID to MSTID allocation table.</td>
<td>-</td>
</tr>
<tr>
<td>allocation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Station and Media Access Control Connectivity Discovery (ieee802-dot1ab-lldp)

6.1 Overview

The Station and Media Access Control Connectivity Discovery model is defined in IEEE P802.1ABcu/D1.6 Clause 12.

6.2 Tree Diagram

module: ieee802-dot1ab-lldp
   +--rw lldp
      |   +--rw message-fast-tx?  uint32
      |   +--rw message-tx-hold-multiplier?  uint32
      |   +--rw message-tx-interval?  uint32
      |   +--rw reinit-delay?  uint32
      |   +--rw tx-credit-max?  uint32
      |   +--rw tx-fast-init?  uint32
      |   +--rw notification-interval?  uint32
      |   +--ro remote-statistics
      |      |   +--ro last-change-time?  yang:timestamp
      |      |   +--ro remote-inserts?  yang:zero-based-counter32
      |      |   +--ro remote-deletes?  yang:zero-based-counter32
      |      |   +--ro remote-drops?  yang:zero-based-counter32
      |      |   +--ro remote-ageouts?  yang:zero-based-counter32
      |   +--ro local-system-data
      |      |   +--ro chassis-id-subtype?  iee:chassis-id-subtype-type
      |      |   +--ro chassis-id?  iee:chassis-id-type
      |      |   +--ro system-name?  string
      |      |   +--ro system-description?  string
      |      |   +--ro system-capabilities-supported?  lldp-types:system-capabilities-map
      |      |   +--ro system-capabilities-enabled?  lldp-types:system-capabilities-map
      |      +--rw port* [name dest-mac-address]
      |          +--rw name  if:interface-ref
      |          +--rw dest-mac-address  iee:mac-address
      |          +--rw admin-status?  enumeration
      |          +--rw notification-enable?  boolean
      |          +--rw tlvs-tx-enable?  bits
      |          +--rw message-fast-tx?  uint32
      |          +--rw message-tx-hold-multiplier?  uint32
      |          +--rw message-tx-interval?  uint32
      |          +--rw reinit-delay?  uint32
+-rw tx-credit-max?  uint32
+-rw tx-fast-init?  uint32
+-rw notification-interval?  uint32
+-rw management-address-tx-port* [address-subtype man-address]
  |   +-rw address-subtype  identityref
  |   +-rw man-address  lldp-types:man-addr-type
  |   +-rw tx-enable?  boolean
  |   +-ro addr-len?  uint32
  |   +-ro if-subtype?  lldp-types:man-addr-if-subtype
  |   +-ro if-id?  uint32
+-ro port-id-subtype?  ieee:port-id-subtype-type
+-ro port-id?  ieee:port-id-type
+-ro port-desc?  string
+-ro tx-statistics
  |   +-ro total-frames?  yang:counter32
  |   +-ro total-length-errors?  yang:counter32
+-ro rx-statistics
  |   +-ro total-ageouts?  yang:zero-based-counter32
  |   +-ro total-discarded-frames?  yang:counter32
  |   +-ro error-frames?  yang:counter32
  |   +-ro total-frames?  yang:counter32
  |   +-ro total-discarded-tlvs?  yang:counter32
  |   +-ro total-unrecognized-tlvs?  yang:counter32
+-ro remote-systems-data* [time-mark remote-index]
  |   +-ro time-mark  yang:timeticks
  |   +-ro remote-index  uint32
  |   +-ro remote-too-many-neighbors?  boolean
  |   +-ro remote-changes?  boolean
  |   +-ro chassis-id-subtype?  ieee:chassis-id-subtype-type
  |   +-ro chassis-id?  ieee:chassis-id-type
  |   +-ro port-id-subtype?  ieee:port-id-subtype-type
  |   +-ro port-id?  ieee:port-id-type
  |   +-ro port-desc?  string
  |   +-ro system-name?  string
  |   +-ro system-description?  string
  |   +-ro system-capabilities-supported?  lldp-types:system-capabilities-map
  |   +-ro system-capabilities-enabled?  lldp-types:system-capabilities-map
+-ro management-address* [address-subtype address]
  |   +-ro address-subtype  identityref
  |   +-ro address  lldp-types:man-addr-type
|--ro if-subtype? lldp-types:man-addr-if-subtype
|--ro if-id? uint32
|--ro remote-unknown-tlv* [tlv-type]
|--ro tlv-type uint32
|--ro tlv-info? binary
|--ro remote-org-defined-info* [info-identifier info-subtype info-index]
    |--ro info-identifier uint32
    |--ro info-subtype uint32
    |--ro info-index uint32
    |--ro remote-info? binary

notifications:
    +---n remote-table-change
        |--ro remote-insert? -> /lldp/remote-statistics/remote-inserts
        |--ro remote-delete? -> /lldp/remote-statistics/remote-deletes
        |--ro remote-drops? -> /lldp/remote-statistics/remote-drops
        |--ro remote-ageouts? -> /lldp/remote-statistics/remote-ageouts

6.3 Usage of YANG Data Objects

6.3.1 Container ieee802-dot1ab-lldp/lldp

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>message-fast-tx</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Time interval in timer ticks between transmissions during fast transmission periods (i.e., txFast is non-zero)</td>
<td>9.2.5.5 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>message-tx-hold-multiplier</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Multiplier of msg-tx-interval</td>
<td>9.2.5.6 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>message-tx-interval</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Time interval in timer ticks between transmissions during normal transmission periods (i.e., txFast is zero).</td>
<td>9.2.5.7 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>reinit-delay</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Initial value for the fast transmitting LLDPPDU.</td>
<td>9.2.5.19 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>tx-credit-max</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The maximum number of consecutive LLDPDUs that can be transmitted at any time.</td>
<td>9.2.5.17 of IEEE Std 802.1AB-2016</td>
</tr>
</tbody>
</table>
### 6.3.2 **Container ieee802-dot1ab-lldp/lldp/remote-statistics**

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>last-change-time</td>
<td>yang:timestamp</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The value of the sysUpTime object</td>
<td>11.5.1 of IEEE Std 802.1AB-2016: lldpV2StatsRemTablesLastChangeTime</td>
</tr>
<tr>
<td>remote-inserts</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of times the complete set of information advertised by a particular MSAP has been inserted into tables contained in remote-systems-data and lldpExtensions objects.</td>
<td>11.5.1 of IEEE Std 802.1AB-2016: lldpV2StatsRemTablesInserts</td>
</tr>
<tr>
<td>remote-deletes</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of times the complete set of information advertised by a particular MSAP has been deleted from tables contained in remote-systems-data and lldpExtensions objects.</td>
<td>11.5.1 of IEEE Std 802.1AB-2016: lldpV2StatsRemTablesDeletes</td>
</tr>
<tr>
<td>remote-drops</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The number of times the complete set of information advertised by a particular MSAP could not be entered into tables contained in remote-systems-data and lldpExtensions objects because of insufficient resources.</td>
<td>11.5.1 of IEEE Std 802.1AB-2016: lldpV2StatsRemTablesDrops</td>
</tr>
</tbody>
</table>
remote-ageouts | yang:zero-based-counter32 | ro | optional | mandatory | The number of times the complete set of information advertised by a particular MSAP has been deleted from tables contained in remote-systems-data and lldpExtensions objects because the information timeliness interval has expired. | 11.5.1 of IEEE Std 802.1AB-2016: lldpV2StatsRemTablesAgeouts |

### 6.3.3 Container iee802-dot1ab-lldp/lldp/local-system-data

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>chassis-id-subtype</td>
<td>ieee:chassis-id-subtype-type</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>The type of encoding used to identify the chassis associated with the local system.</td>
<td>8.5.2.2 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>chassis-id</td>
<td>ieee:chassis-id-type</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Chassis component associated with the local system.</td>
<td>8.5.2.3 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>system-name</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>System name of the local system.</td>
<td>8.5.6.2 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>system-description</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>System description of the local system.</td>
<td>8.5.7.2 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>system-capabilities-supported</td>
<td>lldp-types:system-capabilities-map</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>System capabilities are supported on the local system.</td>
<td>8.5.8.1 of IEEE Std 802.1AB-2016</td>
</tr>
<tr>
<td>system-capabilities-enabled</td>
<td>lldp-types:system-capabilities-map</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>System capabilities that are enabled on the local system.</td>
<td>8.5.8.2 of IEEE Std 802.1AB-2016</td>
</tr>
</tbody>
</table>

### 6.3.4 Container iee802-dot1ab-lldp/lldp/port

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>if:interface-ref</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The port name used to identify the port component (contained in the local chassis with the LLDP agent) associated with this entry.</td>
<td>-</td>
</tr>
<tr>
<td>Field</td>
<td>Datatype</td>
<td>Access</td>
<td>Default</td>
<td>Description</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------------------------------------------------------</td>
<td>-------------------------------------------</td>
<td></td>
</tr>
<tr>
<td>dest-mac-address</td>
<td>ieee:mac-address</td>
<td>rw</td>
<td>mandatory</td>
<td>Destination MAC address</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>admin-status</td>
<td>enumeration</td>
<td>rw</td>
<td>optional</td>
<td>Administratively status of the local LLDP agent.</td>
<td>9.2.5.1 of IEEE Std 802.1AB-2016</td>
<td></td>
</tr>
<tr>
<td>notification-enable</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>Notification status</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>tlvs-tx-enable</td>
<td>bits</td>
<td>rw</td>
<td>optional</td>
<td>LLDP TLVs whose transmission is allowed on the local LLDP agent by the</td>
<td>9.1.2.1 of IEEE Std 802.1AB-2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>network management.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>message-fast-tx</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>message-tx-hold-multiplier</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>message-tx-interval</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>reinit-delay</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tx-credit-max</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tx-fast-init</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>notification-interval</td>
<td>uint32</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>management-address-tx-port</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Set of ports (represented as a PortList) on which the local system management address instance will be transmitted.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>port-id-subtype</td>
<td>ieee:port-id-subtype-type</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>8.5.3.2 of IEEE Std 802.1AB-2016</td>
<td></td>
</tr>
<tr>
<td>port-id</td>
<td>ieee:port-id-type</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>8.5.3.3 of IEEE Std 802.1AB-2016</td>
<td></td>
</tr>
<tr>
<td>port-desc</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>8.5.5.2 of IEEE Std 802.1AB-2016</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>802 LAN station's port description associated with the local system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tx-statistics</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>LLDP frame transmission statistics for a particular port.</td>
<td>-</td>
</tr>
<tr>
<td>rx-statistics</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>LLDP frame reception statistics for a particular port.</td>
<td>-</td>
</tr>
<tr>
<td>remote-systems-data</td>
<td>list</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Information about a particular physical network connection.</td>
<td>-</td>
</tr>
</tbody>
</table>

### 6.4 Notifications

#### 6.4.1 remote-table-change (optional)

A rem-table-change notification is sent when the value of remote-table-last-change-time changes. It can be utilized by an NMS to trigger LLDP remote systems table maintenance polls.

### 6.5 Augmentation by Module ieee802-dot1q-lldp-basic-tlv (IEEE 802.1Qcz-d2-0)

#### 6.5.1 Additional Leaves for /ieee802-dot1ab-lldp

Augments lldp with information needed for system level extension tlv

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>vid-usage-digest-tlv-extension</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>VID Usage Digest TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.5</td>
</tr>
<tr>
<td>management-vid-tlv-extension</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Management VID TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.6</td>
</tr>
</tbody>
</table>

#### 6.5.2 Additional Leaves for /ieee802-dot1ab-lldp/port

Augments port with basic extension tlv

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
</table>
### tlvs-tx-org-basic-enable

<table>
<thead>
<tr>
<th>bits</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Bitmap that includes the basicSet of tlvs from Table D.1 of 802.1Q-2018</th>
<th>IEEE Std 802.1Q-2018 Annex D.2</th>
</tr>
</thead>
</table>

### port-vlan-id-tlv-extension

<table>
<thead>
<tr>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Port VLAN ID TLV</th>
<th>IEEE Std 802.1Q-2018 Annex D.2.1</th>
</tr>
</thead>
</table>

### port-and-protocol-vlan-id-extension

<table>
<thead>
<tr>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Port and Protocol VLAN ID TLV</th>
<th>IEEE Std 802.1Q-2018 Annex D.2.2.2</th>
</tr>
</thead>
</table>

### port-vlan-name-tlv-extension

<table>
<thead>
<tr>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Port VLAN NAME TLV</th>
<th>IEEE Std 802.1Q-2018 Annex D.2.3</th>
</tr>
</thead>
</table>

### protocol-identity-tlv-extension

<table>
<thead>
<tr>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Protocol Identity TLV</th>
<th>IEEE Std 802.1Q-2018 Annex D.2.4</th>
</tr>
</thead>
</table>

### link-aggregation-tlv-extension

<table>
<thead>
<tr>
<th>container</th>
<th>rw</th>
<th>optional</th>
<th>optional</th>
<th>Link Aggregation TLV</th>
<th>IEEE Std 802.1AX-2014 Annex F.1</th>
</tr>
</thead>
</table>

### 6.5.3 Additional Leaves for /ieee802-dot1ab-lldp/port/remote-systems-data

Augments port remote-systems-data with received basic extension tlvs

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>port-vlan-id-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Port VLAN ID TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.1</td>
</tr>
<tr>
<td>port-and-protocol-vlan-id-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Port and Protocol VLAN ID TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.2.2</td>
</tr>
<tr>
<td>port-vlan-name-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Port VLAN NAME TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.3</td>
</tr>
<tr>
<td>Extension Name</td>
<td>Type</td>
<td>Access</td>
<td>Mode</td>
<td>TLV Name</td>
<td>Standard</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>protocol-identity-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>Protocol Identity TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.4</td>
<td></td>
</tr>
<tr>
<td>link-aggregation-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>Link Aggregation TLV</td>
<td>IEEE Std 802.1AX-2014 Annex F.1</td>
<td></td>
</tr>
<tr>
<td>vid-usage-digest-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>VID Usage Digest TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.5</td>
<td></td>
</tr>
<tr>
<td>management-vid-tlv-extension</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>Management VID TLV</td>
<td>IEEE Std 802.1Q-2018 Annex D.2.6</td>
<td></td>
</tr>
</tbody>
</table>
7 IEEE Standard for Ethernet (ieee802-ethernet-interface)

7.1 Overview

The IEEE Standard for Ethernet model is defined in IEEE 802.3-2019.
This model only augments ietf-interfaces/interface. The augmentations are described in the respective chapters of this document.

7.1.1 Main Features

The module ietf-ethernet-interface comprises the feature-definitions listed in this section.
It is optional for a server to support features, so these functionalities are optional in the YANG tree.

7.1.1.1 Feature ethernet-pfc

This device supports Ethernet priority flow-control.
This feature is not required in 60802. If a device supports the ethernet-pfc feature, then the leaf /interfaces/interface/ethernet/flow-control/pfc/enable is mandatory to allow 60802 configuration entities to disable this feature.

7.1.1.2 Feature ethernet-pause

This device supports Ethernet PAUSE.
This feature is not required in 60802

7.1.1.3 Feature dynamic-rate-control

This feature indicates that the device supports Ethernet interfaces lowering the average data rate of the MAC sublayer, with frame granularity, by using Rate Control to dynamically increase the inter-packet gap for some types of Ethernet interface. Only valid for Ethernet interfaces operating at speeds (data rates) above 1000 Mb/s.
This feature is not required in 60802
Reference: IEEE Std 802.3, 30.3.1.1.33 aRateControlAbility.

7.1.1.4 Feature csma-cd

This feature indicates that the device supports Ethernet interfaces running at half-duplex using CSMA/CD.
This feature is not required in 60802
7.1.1.5 Feature trx-power-level-reporting-supported

This feature indicates the support for optical transceiver power level monitoring and reporting capability. When 'true', the given interface supports the optical power level monitoring and reporting function. Otherwise, the value is 'false'.

This feature is not required in 60802.

7.1.1.6 Feature fec-supported

This object indicates the support of operation of the optional FEC sublayer of the 1G-EPON PHY specified in IEEE Std 802.3, 65.2. The value of 'unknown' is reported in the initialization, for non FEC support state or type not yet known. The value of 'not supported' is reported when the sublayer is not supported. The value of 'supported' is reported when the sublayer is supported. This object is applicable for an OLT, with the same value for all logical links, and for an ONU.

Reference: IEEE Std 802.3, 30.5.1.1.15.

This feature is not required in 60802.

7.1.1.7 Feature uni-directional-link-fault

This feature means the device supports Uni Directional Link Fault detection.

Reference: IEEE Std 802.3, 57.1.2:a, 30.3.6.1.6 aOAMLocalConfiguration and 30.3.6.1.7 aOAMRemoteConfiguration.

This feature is not required in 60802.

7.1.1.8 Feature remote-loopback-initiate

This feature means the device supports being the initiator of remote loopback.

Reference: IEEE Std 802.3, 57.1.2:b, 30.3.6.1.6 aOAMLocalConfiguration

This feature is not required in 60802.

7.1.1.9 Feature remote-loopback-respond

This feature means the device supports responding to remote loopback control OAMPDUs received from the peer.

Reference: IEEE Std 802.3, 57.1.2:b, 30.3.6.1.7 aOAMRemoteConfiguration

This feature is not required in 60802.

7.1.1.10 Feature link-monitoring-local

This feature means the device monitors the link at the local side and can generate Link Event OAMPDUs to the peer device.

Reference: IEEE Std 802.3, 57.1.2:c:1, 30.3.6.1.6 aOAMLocalConfiguration, and 30.3.6.1.7 aOAMRemoteConfiguration.
This feature is **not required** in 60802.

### 7.1.1.11 Feature link-monitoring-remote

This feature means the device can process Link Event OAMPDUs received from the peer device and report itself about this event on its own management interface.

Reference: IEEE Std 802.3, 57.1.2:c:1, 30.3.6.1.6 aOAMLocalConfiguration, and 30.3.6.1.7 aOAMRemoteConfiguration.

This feature is **not required** in 60802.

### 7.1.1.12 Feature remote-mib-retrieval-initiate

This feature means the device supports data retrieval from the peer device. I.e. the device can send Variable Requests OAMPDUs to the peer side and process the received Variable Response OAMPDUs.

Reference: IEEE Std 802.3, 57.1.2:c:2, 30.3.6.1.6 aOAMLocalConfiguration, and 30.3.6.1.7 aOAMRemoteConfiguration.

This feature is **not required** in 60802.

### 7.1.1.13 Feature remote-mib-retrieval-respond

This feature means the device allows the peer device to retrieve data from the managed device. I.e. the device can process received Variable Requests OAMPDUs and respond with Variable Response OAMPDUs.

Reference: IEEE Std 802.3, 57.1.2:c:2, 30.3.6.1.6 aOAMLocalConfiguration, and 30.3.6.1.7 aOAMRemoteConfiguration.

This feature is **not required** in 60802.

### 7.2 Tree Diagram

```yang
mODULE ieee802-ethernet-interface

Network
module: ieee802-ethernet-interface

Interface
augment /if:interfaces/if:interface:
 +--rw ethernet
 +--rw auto-negotiation!
 | +--rw enable? boolean
 | +--ro negotiation-status? enumeration
 +--rw duplex?
 +--rw speed? eth-if-speed-type
 +--rw flow-control
 | +--rw pause {ethernet-pause}?
 | | +--rw direction? pause-fc-direction-type
 | | +--ro statistics
 | | +--ro in-frames-pause? yang:counter64
```
| | | ro out-frames-pause? yang:counter64
| | ro pfc {ethernet-pfc}? 
| | | ro enable? boolean
| | | ro statistics
| | | | ro in-frames-pfc? yang:counter64
| | | | ro out-frames-pfc? yang:counter64
| | | rw force-flow-control? boolean
| | | ro max-frame-length? uint16
| | ro mac-control-extension-control? boolean
| | ro frame-limit-slow-protocol? uint64
| | | ro capabilities
| | | ro auto-negotiation? boolean
| | ro statistics
| | | ro frame
| | | | ro in-total-frames? yang:counter64
| | | | ro in-total-octets? yang:counter64
| | | | ro in-frames? yang:counter64
| | | | ro in-multicast-frames? yang:counter64
| | | | ro in-broadcast-frames? yang:counter64
| | | | ro in-error-fcs-frames? yang:counter64
| | | | ro in-error-undersize-frames? yang:counter64
| | | | ro in-error-oversize-frames? yang:counter64
| | | | ro in-error-mac-internal-frames? yang:counter64
| | | | ro out-frames? yang:counter64
| | | | ro out-multicast-frames? yang:counter64
| | | | ro out-broadcast-frames? yang:counter64
| | | | ro out-error-mac-internal-frames? yang:counter64
| | | | ro phy
| | | | | ro in-error-symbol? yang:counter64
| | | | | lpi
| | | | | | ro in-lpi-transitions? yang:counter64
| | | | | | ro in-lpi-time? decimal64
| | | | | | ro out-lpi-transitions? yang:counter64
| | | | | | ro out-lpi-time? decimal64
| | | | ro mac-control
| | | | | ro in-frames-mac-control-unknown? yang:counter64
| | | | | ro in-frames-mac-control-extension? yang:counter64
| | | | | ro out-frames-mac-control-extension? yang:counter64
### Usage of YANG Data Objects

#### 7.3.1 Container ethernet

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto-negotiation</td>
<td>container</td>
<td>rw</td>
<td>presence</td>
<td>not required</td>
<td>The presence of this container indicates that auto-negotiation is supported on this Ethernet interface. Contains auto-negotiation transmission parameters. This container contains a data node that allows the advertised duplex value in the negotiation to be restricted. If not specified then the default behavior for the duplex data node is to negotiate all available values for the particular type of Ethernet PHY associated with the interface. If auto-negotiation is enabled, and PAUSE frame based flow control has not been explicitly configured, then the default PAUSE frame based flow control capabilities that are negotiated allow for bi-directional or egress-only PAUSE frame based flow control. If auto-negotiation is enabled, and PAUSE frame based flow control has been explicitly configured, then the configuration settings restrict the values that may be negotiated. However, it should be noted that the protocol does not allow only egress PAUSE frame based flow control to be negotiated without also allowing bi-directional PAUSE frame based flow control.</td>
<td>IEEE Std 802.3, Clause 28 and Annexes 28A-D</td>
</tr>
<tr>
<td><strong>duplex</strong></td>
<td><strong>duplex-type</strong></td>
<td><strong>rw</strong></td>
<td><strong>optional</strong></td>
<td><strong>mandatory</strong></td>
<td>Operational duplex mode of the Ethernet interface.</td>
<td><strong>IEEE Std 802.3, 30.3.1.1.32</strong></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td><strong>speed</strong></td>
<td>eth-if-speed-type</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Operational speed (data rate) of the Ethernet interface. The default value is implementation-dependent.</td>
<td>-</td>
</tr>
<tr>
<td><strong>flow-control</strong></td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Holds the different types of Ethernet PAUSE frame based flow control that can be enabled.</td>
<td>-</td>
</tr>
<tr>
<td><strong>max-frame-length</strong></td>
<td>uint16</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>This indicates the MAC frame length (including FCS bytes) at which frames are dropped for being too long.</td>
<td>IEEE Std 802.3, 30.3.1.1.37</td>
</tr>
<tr>
<td><strong>mac-control-extension-control</strong></td>
<td>boolean</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>A value that identifies the current EXTENSION MAC Control function, as specified in IEEE Std 802.3, Annex 31C.</td>
<td>IEEE Std 802.3, 30.3.8.3</td>
</tr>
<tr>
<td><strong>frame-limit-slow-protocol</strong></td>
<td>uint64</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The maximum number of Slow Protocol frames of a given subtype that can be transmitted in a one second interval. The default value is 10.</td>
<td>IEEE Std 802.3, 30.3.1.1.38</td>
</tr>
<tr>
<td><strong>capabilities</strong></td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Container with all Ethernet interface specific capabilities.</td>
<td>-</td>
</tr>
<tr>
<td><strong>statistics</strong></td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Contains statistics specific to Ethernet interfaces. Discontinuities in the values of counters in the container can occur at re-initialization of the management system, and at other times as indicated by the value of the ‘discontinuity-time’ leaf defined in the ietf-interfaces YANG module (IETF RFC 8343).</td>
<td>-</td>
</tr>
</tbody>
</table>
8 Keystore model (ietf-keystore)

8.1 Overview

The Keystore model is defined draft-ietf-netconf-keystore-22.

8.1.1 Main Features

The module ietf-interfaces comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

8.1.1.1 Feature central-keystore-supported

The 'central-keystore-supported' feature indicates that the server supports the keystore.

This feature is not required in 60802.

8.1.1.2 Feature local-definitions-supported

The 'local-definitions-supported' feature indicates that the server supports locally-defined keys.

This feature is not required in 60802.

8.2 Tree Diagram

```
module: ietf-keystore
 +--rw keystore
 +--rw asymmetric-keys
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw public-key-format identityref
 | +--rw public-key binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--rw cleartext-private-key
 | | | +--rw cleartext-private-key? binary
 | | | +--rw (hidden-private-key)
 | | | | +--rw hidden-private-key? empty
 | | | | +--rw (encrypted-private-key) {private-key-encryption}? empty
 | | | | | +--rw encrypted-private-key
 | | | | | | +--rw encrypted-by
 | | | | | | | +--rw (encrypted-by-choice)
```
+-rw symmetric-key-ref
|   | ---:(symmetric-key-ref)
|   |   | ---rw symmetric-key-ref?  ks:symmetric-key-ref
|   | ---:(asymmetric-key-ref)
|   |   | ---rw asymmetric-key-ref?  ks:asymmetric-key-ref
|   |   |   | ---rw encrypted-value-format  identityref
|   |   |   | ---rw encrypted-value  binary
|   | rw certificates
|   |   | ---rw certificate* [name]
|   |   |     | ---rw name  string
|   |   |     | ---rw cert-data  end-entity-cert-cms
|   |   | ---n certificate-expiration {certificate-expiration-notification}?
|   |   |     |   | --- expiration-date  yang:date-and-time
|   |   |   |   | ---x generate-certificate-signing-request {certificate-signing-request-generation}?
|   |   |     |   |   | ---w input
|   |   |     |   |   |     | ---w csr-info  ct:csr-info
|   |   |   |   | ---ro output
|   |   |     |   |     |   | ---ro certificate-signing-request  ct:csr
|   | rw symmetric-keys
|   |   | ---rw symmetric-key* [name]
|   |   |     | ---rw name  string
|   |   |     | ---rw key-format?  identityref
|   |   |   | ---rw (key-type)
|   |     |     | ---:(cleartext-key)
|   |     |     |     | ---rw cleartext-key?  binary
|   |     |     | ---:(hidden-key)
|   |     |     |     | ---rw hidden-key?  empty
|   |     |     |   ---:(encrypted-key) {symmetric-key-encryption}?
|   |     |     |     | ---rw encrypted-key
|   |     |     |     |     | ---rw encrypted-by
|   |     |     |     |     |     | ---rw (encrypted-by-choice)
|   |     |     |     |     |     |     | ---:(symmetric-key-ref)
|   |     |     |     |     |     |     |     | ---rw symmetric-key-ref?  ks:symmetric-key-ref
|   |     |     |     |     |     |     |     | ---:(asymmetric-key-ref)
|   |     |     |     |     |     |     |     | ---rw asymmetric-key-ref?  ks:asymmetric-key-ref
|   |     |     |   ---rw encrypted-value-format  identityref
|   |     |     | ---rw encrypted-value  binary
### 8.3 Usage of YANG Data Objects

#### 8.3.1 Container keystore

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>asymmetric-keys</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>A list of asymmetric keys.</td>
<td>-</td>
</tr>
<tr>
<td>symmetric-keys</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>A list of symmetric keys.</td>
<td>-</td>
</tr>
</tbody>
</table>

#### 8.3.2 List asymmetric-keys/asymmetric-key

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>An arbitrary name for the asymmetric key.</td>
<td>-</td>
</tr>
<tr>
<td>public-key-format</td>
<td>identityref</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The &quot;public-key-format&quot; node is an identity-reference to the &quot;public-key-format&quot; abstract base identity discussed in draft-ietf-netconf-crypto-types-19</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
<tr>
<td>public-key</td>
<td>binary</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The &quot;public-key&quot; node is the public key data in the selected format.</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
<tr>
<td>private-key-format</td>
<td>identityref</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The &quot;private-key-format&quot; node is an identity-reference to the &quot;private-key-format&quot; abstract base identity discussed in draft-ietf-netconf-crypto-types-19</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
<tr>
<td>private-key-type</td>
<td>choice</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The &quot;choice&quot; statement enables the private key data to be cleartext, encrypted, or hidden.</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
<tr>
<td>certificates</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Certificates associated with this asymmetric key.</td>
<td>-</td>
</tr>
</tbody>
</table>
8.3.3 List symmetric-keys/symmetric-key

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>An arbitrary name for the symmetric key.</td>
<td></td>
</tr>
<tr>
<td>key-format</td>
<td>identityref</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Identifies the symmetric key’s format. Implementations SHOULD ensure that</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the incoming symmetric key value is encoded in the specified format.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>For encrypted keys, the value is the same as it would have been if the key</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>were not encrypted.</td>
<td></td>
</tr>
<tr>
<td>key-type</td>
<td>choice</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Choice between key types.</td>
<td>draft-ietf-netconf-crypto-types-19</td>
</tr>
</tbody>
</table>

8.4 Notifications

8.4.1 certificate-expiration

A notification indicating that the configured certificate is either about to expire or has already expired.
9  Truststore model (ietf-truststore)

9.1  Overview

The Trust Anchors model is defined in draft-ietf-netconf-trust-anchors-10.

9.1.1  Main Features

The module ietf-truststore comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

9.1.1.1  Feature truststore-supported

The 'truststore-supported' feature indicates that the server supports the Truststore (i.e., implements the 'ietf-truststore' module).

This feature is optional in 60802.

9.1.1.2  Feature local-definitions-supported

The 'local-definitions-supported' feature indicates that the server supports locally-defined trust anchors.

This feature is optional in 60802.

9.1.1.3  Feature certificates

The 'certificates' feature indicates that the server implements the /truststore/certificate-bags subtree.

This feature is optional in 60802.

9.1.1.4  Feature public-keys

The 'public-keys' feature indicates that the server implements the /truststore/public-key-bags subtree.

This feature is optional in 60802.

9.2  Tree Diagram

module: ietf-truststore

    +--rw truststore
        +--rw certificate-bags! {certificates}?
            |   +--rw certificate-bag* [name]
            |       +--rw name           string
            |       +--rw description?   string
            |   +--rw certificate* [name]
9.3 Usage of YANG Data Objects

9.3.1 Container truststore

The Truststore contains bags of certificates and public keys.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>certificate-bags</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>public-key-bags</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

9.3.2 List /truststore/certificate-bags/certificate-bag

The container /truststore/certificate-bags is available if the feature "certificates" is set. It is a presence-container which indicates that certificate bags have been configured. It contains a list with a collection of certificate bags. The list must contain at least one element.

Each bag of certificates SHOULD be for a specific purpose. For instance, one bag could be used to authenticate a specific set of servers, while another could be used to authenticate a specific set of clients.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>An arbitrary name for this bag of certificates.</td>
<td>-</td>
</tr>
</tbody>
</table>
9.3.3 List /truststore/public-keys-bags/public-key-bag

The container /truststore/public-keys-bags is available if the feature “certificates” is set. It is a presence-container which indicates that public keys have been configured. It contains a list with a collection of public key bags. The list must contain at least one element.

Each bag of keys SHOULD be for a specific purpose. For instance, one bag could be used authenticate a specific set of servers, while another could be used to authenticate a specific set of clients.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>rw</td>
<td>mandatory</td>
<td>???</td>
<td>An arbitrary name for this bag of public keys.</td>
<td>-</td>
</tr>
<tr>
<td>description</td>
<td>string</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>A description for this bag public keys. The intended purpose for the bag SHOULD be described.</td>
<td></td>
</tr>
<tr>
<td>public-key</td>
<td>list</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>List of public keys</td>
<td></td>
</tr>
</tbody>
</table>
10 Timesync model (draft ieee1588-ptp)

10.1 Overview

The Timesync model is only available as draft version at the moment. It is available in the path /standard/ieee/draft/1588 in the YANG github repository and is the first balloted draft of the YANG module of amendment IEEE P1588e.

10.1.1 Main Features

The module ieee1588-ptp comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

10.1.1.1 Feature fault-log

Logging of faults detected in the PTP Instance.

This feature is not required in 60802.

10.1.1.2 Feature unicast-negotiation

Unicast negotiation conducted through use of TLVs.

This feature is not required in 60802.

10.1.1.3 Feature path-trace

Use of the PATH_TRACE TLV for tracing the route of a PTP Announce message through the PTP Network.

This feature is not required in 60802.

10.1.1.4 Feature alternate-timescale

The transmission of an ALTERNATE_TIME_OFFSET_INDICATOR TLV entity from the Grandmaster PTP Instance may indicate the offset of an alternate timescale from the timescale in use in the domain.

This feature is not required in 60802.

10.1.1.5 Feature holdover-upgrade

A holdover-upgradable PTP Instance can potentially become the Grandmaster PTP Instance in the event the previous Grandmaster PTP Instance is disconnected or its characteristics degrade.

This feature is not required in 60802.
10.1.1.6 Feature cmlds

The Common Mean Link Delay Service (CMLDS) is an optional service that enables any PTP Port that would normally obtain the value of a link’s <meanLinkDelay> and <neighborRateRatio> using the peer-to-peer method to instead obtain these values from this optional service. The CMLDS service is available to all PTP Instances communicating with a specific transport mechanism, over the physical link between two PTP Nodes.

This feature is mandatory in 60802.

10.1.1.7 Feature timestamp-correction

Correction of timestamps using configurable management data.

This feature is not required in 60802.

10.1.1.8 Feature asymmetry-correction

Calculation of the <delayAsymmetry> on a Direct PTP Link between two PTP Instances connected using an applicable bidirectional medium.

This feature is not required in 60802.

10.1.1.9 Feature slave-monitoring

Mechanism for monitoring timing information in a PTP Port in the slave state. The slave-monitoring feature specifies TLVs that the Slave PTP Instance transmits with this information, typically in a Signaling message.

This feature is not required in 60802.

10.1.1.10 Feature enhanced-metrics

Mechanism for propagating estimates of various inaccuracy components affecting the overall expected PTP Instance Time accuracy. The metrics will be updated and available for utilization at the various points along the PTP timing chain: from the Grandmaster Instance, up to a leaf PTP Instance in the synchronization tree. Each PTP Instance along the timing path updates the relevant metrics based on its contribution to the expected degradation in PTP Instance Time accuracy due to various induced timing error components.

This feature is not required in 60802.

10.1.1.11 Feature grandmaster-cluster

Mechanism for faster selection of the Grandmaster PTP Instance from the set of PTP Instances for which this option is both implemented and enabled.

This feature is not required in 60802.
10.1.1.12 Feature alternate-master

Mechanism for PTP Ports on a PTP Communication Path that are not currently the MASTER port of that PTP Communication Path to exchange PTP timing information with other PTP Ports on the same PTP Communication Path, and for each of the other PTP Ports to acquire knowledge of the characteristics of the transmission path between itself and each alternate master PTP Port.

This feature is not required in 60802.

10.1.1.13 Feature unicast-discovery

Mechanism for PTP to be used over a network that does not provide multicast. A PTP Instance is configured with the addresses of PTP Ports of other PTP Instances with which it should attempt to establish unicast communication. The PTP Instance may request that these PTP Ports transmit unicast Announce, Sync, and DelayResp messages to it.

This feature is not required in 60802.

10.1.1.14 Feature acceptable-master

Mechanism that allows PTP Ports in the SLAVE state to be configured to refuse to synchronize to PTP Instances not on the acceptable master list.

This feature is not required in 60802.

10.1.1.15 Feature external-port-config

External port configuration allows an external entity (such as YANG-based remote management) to disable the IEEE Std 1588 state machines that control each port's state, including the BMCA. Each port's state is then configured by the external entity.

This feature is mandatory in 60802.

10.1.1.16 Feature performance-monitoring

Collection of performance monitoring logs that can be read using management.

This feature is not required in 60802.

10.1.1.17 Feature l1-sync

Layer 1-based synchronization performance enhancement

This feature is not required in 60802.

10.2 Tree Diagram

module: ieee1588-tp
  +--rw ptp
  |    +--rw instance-list* [instance-number]
| +--rw instance-number           uint32
| +--rw default-ds
|    | +--rw instance-type?           instance-type-enumeration
|    | +--rw instance-enable?         boolean
|    | +--ro clock-identity?           clock-identity-type
|    | +--rw number-ports?            uint16
|    | +--rw clock-quality
|    |    | +--rw clock-class?             uint8
|    |    | +--rw clock-accuracy?          uint8
|    |    | +--rw offset-scaled-log-variance? uint16
|    | +--rw priority1?               uint8
|    | +--rw priority2?               uint8
|    | +--rw domain-number?           uint8
|    | +--rw sdo-id?                  uint16
|    | +--rw slave-only?              boolean
|    | +--rw current-time
|    |    | +--rw seconds-field?           uint64
|    |    | +--rw nanoseconds-field?       uint32
|    | +--rw external-port-config-enable? boolean {external-port-config}?  
|    | +--rw max-steps-removed?       uint16
|    | x--rw two-step-flag?           boolean
| +--rw current-ds
|    | +--rw steps-removed?           uint16
|    | +--rw offset-from-master?      time-interval-type
|    | +--rw mean-delay?              time-interval-type
|    | x--rw mean-path-delay?         time-interval-type
|    | +--rw synchronization-uncertain? boolean
| +--rw parent-ds
|    | +--rw parent-port-identity     clock-identity-type
|    |    | +--rw clock-identity?          clock-identity-type
|    |    | +--rw port-number?             uint16
|    |    | +--rw parent-stats?            boolean
|    | +--rw observed-parent-offset-scaled-log-variance? uint16
|    | +--rw observed-parent-clock-phase-change-rate? int32
|    | +--rw grandmaster-identity?    clock-identity-type
|    | +--rw grandmaster-clock-quality
|    |    | +--rw clock-class?             uint8
|    |    | +--rw clock-accuracy?          uint8
|    |    | +--rw offset-scaled-log-variance? uint16
|    |    | +--rw grandmaster-priority1?   uint8
|
+-ro stddev-mean-path-delay?  time-interval-type
+-ro average-offset-from-master?  time-interval-type
+-ro minimum-offset-from-master?  time-interval-type
+-ro maximum-offset-from-master?  time-interval-type
+-ro stddev-offset-from-master?  time-interval-type
+-rw enhanced-metrics-ds {enhanced-metrics}?
  +---rw enable?  boolean
+-rw port-ds-list* [port-number]
  +---rw port-number  uint16
  +---rw port-state?  port-state-enumeration
  +---rw underlying-interface?  if:interface-ref
  +---rw port-enable?  boolean
  +---rw log-min-delay-req-interval?  int8
  +---rw mean-link-delay?  time-interval-type
  x---rw peer-mean-path-delay?  time-interval-type
  +---rw log-announce-interval?  int8
  +---rw announce-receipt-timeout?  uint8
  +---rw log-sync-interval?  int8
  +---rw delay-mechanism?  delay-mechanism-enumeration
  +---rw log-min-pdelay-req-interval?  int8
  +---rw version-number?  uint8
  +---rw minor-version-number?  uint8
  +---rw delay-asymmetry?  time-interval-type
  +---rw master-only?  boolean
  +---rw timestamp-correction-port-ds {timestamp-correction}?
    +---rw egress-latency?  time-interval-type
    +---rw ingress-latency?  time-interval-type
    +---rw asymmetry-correction-port-ds {asymmetry-correction}?
      +---rw enable?  boolean
      +---rw constant-asymmetry?  time-interval-type
      +---rw scaled-delay-coefficient?  relative-difference-type
    +---rw description-port-ds
      +---rw profile-identifier?  binary
      +---rw protocol-address
        +---rw network-protocol?  identityref
        +---rw address-length?  uint16
        +---rw address-field?  binary
      +---rw unicast-negotiation-port-ds {unicast-negotiation}?
      +---rw enable?  boolean
    +---rw alternate-master-port-ds {alternate-master}?
+-ro frequency-offset-tx? time-interval-type
+-ro frequency-offset-tx-timestamp
    +-ro seconds-field? uint64
    +-ro nanoseconds-field? uint32
+-ro communication-cap-port-ds
    +-ro sync
        |-+-ro multicast-capable? boolean
        |-+-ro unicast-capable? boolean
        |-+-ro unicast-negotiation-capable? boolean
        +-ro delay-resp
            +-ro multicast-capable? boolean
            +-ro unicast-capable? boolean
            +-ro unicast-negotiation-capable? boolean
            +-ro unicast-negotiation-required? boolean
+-rw performance-monitoring-port-ds {performance-monitoring}?
    +-ro record-list-peer-delay* [index]
        |-+-ro index uint16
        |-+-ro pm-time? yang:timestamp
        |-+-ro average-mean-link-delay? time-interval-type
        |-+-ro min-mean-link-delay? time-interval-type
        |-+-ro max-mean-link-delay? time-interval-type
        |-+-ro stddev-mean-link-delay? time-interval-type
    +-ro record-list* [index]
        |-+-ro index uint16
        |-+-ro pm-time? yang:timestamp
        |-+-ro announce-tx? yang:zero-based-counter32
        |-+-ro announce-rx? yang:zero-based-counter32
        |-+-ro announce-foreign-rx? yang:zero-based-counter32
        |-+-ro sync-tx? yang:zero-based-counter32
        |-+-ro sync-rx? yang:zero-based-counter32
        |-+-ro follow-up-tx? yang:zero-based-counter32
        |-+-ro follow-up-rx? yang:zero-based-counter32
        |-+-ro delay-req-tx? yang:zero-based-counter32
        |-+-ro delay-req-rx? yang:zero-based-counter32
        |-+-ro delay-resp-tx? yang:zero-based-counter32
        |-+-ro delay-resp-rx? yang:zero-based-counter32
        |-+-ro pdelay-req-tx? yang:zero-based-counter32
        |-+-ro pdelay-req-rx? yang:zero-based-counter32
        |-+-ro pdelay-resp-tx? yang:zero-based-counter32
        |-+-ro pdelay-resp-rx? yang:zero-based-counter32
---ro pdelay-resp-rx? yang:zero-based-counter32
---ro pdelay-resp-follow-up-tx? yang:zero-based-counter32
---ro pdelay-resp-follow-up-rx? yang:zero-based-counter32

++rw common-services-port
| ++rw cmlds-link-port-port-number? uint16 {cmlds}?
| ++rw external-port-config-port-ds {external-port-config}?
| ++rw desired-state? port-state-enumeration
| ++rw slave-monitoring-port-ds {slave-monitoring}?
|  ++rw enable? bits
|  ++rw events-per-rx-sync-timing-tlv? uint8
|  ++rw events-per-rx-sync-computed-tlv? uint8
|  ++rw events-per-tx-timestamps-tlv? uint8
|  ++rw tx-event-type? uint8
|  ++rw rx-sync-timing-tlv-message-m? uint8
|  ++rw rx-sync-computed-tlv-message-m? uint8
|  ++rw tx-timestamps-tlv-message-m? uint8

x++rw transparent-clock-default-ds
| x--ro clock-identity? clock-identity-type
| x++rw number-ports? uint16
| x++rw delay-mechanism? delay-mechanism-enumeration
| x++rw primary-domain? uint8

x++rw transparent-clock-port-ds-list* [port-number]
| x++rw port-number uint16
| x++rw log-min-pdelay-req-interval? int8
| x++rw faulty-flag? boolean
| x++rw peer-mean-path-delay? time-interval-type
++rw common-services
++rw cmlds {cmlds}?
  ++rw default-ds
    ++rw clock-identity? clock-identity-type
    ++rw number-link-ports? uint16
    ++rw port-list* [port-number]
      ++rw port-number uint16
      ++ro underlying-interface? if:interface-ref
      ++ro domain-number? uint8
      ++ro sdo-id? uint16
      ++ro service-measurement-valid? boolean
      ++ro mean-link-delay? time-interval-type
      ++ro scaled-neighbor-rate-ratio? int32
      ++rw log-min-pdelay-req-interval? int8
### Version Numbers
- `rw version-number? uint8`
- `rw minor-version-number? uint8`

### Delay Asymmetry
- `rw delay-asymmetry? time-interval-type`

### Timestamp Correction
- `rw timestamp-correction-port-ds {timestamp-correction}?
  |   `rw egress-latency? time-interval-type`
  |   `rw ingress-latency? time-interval-type`

### Asymmetry Correction
- `rw asymmetry-correction-port-ds {asymmetry-correction}?
  |   `rw enable? boolean`
  |   `rw constant-asymmetry? time-interval-type`
  |   `rw scaled-delay-coefficient? relative-difference-type`

### Performance Monitoring
- `rw performance-monitoring-port-ds {performance-monitoring}?
  |   `ro record-list-peer-delay* [index]
    |   |   `ro index uint16`
    |   |   `ro pm-time? yang:timestamp`
    |   |   `ro announce-tx? yang:zero-based-counter32`
    |   |   `ro announce-rx? yang:zero-based-counter32`
    |   |   `ro announce-foreign-rx? yang:zero-based-counter32`
    |   |   `ro sync-tx? yang:zero-based-counter32`
    |   |   `ro sync-rx? yang:zero-based-counter32`
    |   |   `ro follow-up-tx? yang:zero-based-counter32`
    |   |   `ro follow-up-rx? yang:zero-based-counter32`
    |   |   `ro delay-req-tx? yang:zero-based-counter32`
    |   |   `ro delay-req-rx? yang:zero-based-counter32`
    |   |   `ro delay-resp-tx? yang:zero-based-counter32`
    |   |   `ro delay-resp-rx? yang:zero-based-counter32`
    |   |   `ro pdelay-req-tx? yang:zero-based-counter32`
    |   |   `ro pdelay-req-rx? yang:zero-based-counter32`
    |   |   `ro pdelay-resp-tx? yang:zero-based-counter32`
    |   |   `ro pdelay-resp-rx? yang:zero-based-counter32`
    |   |   `ro pdelay-resp-follow-up-tx? yang:zero-based-counter32`
    |   |   `ro pdelay-resp-follow-up-rx? yang:zero-based-counter32`
10.3 Usage of YANG Data Objects

10.3.1 List /ieee1588/ptp/instance-list

The container /ieee1588/ptp contains all nodes for the PTP data sets.

/ieee1588/ptp/instance-list is a list of one or more PTP Instances in the product (PTP Node). Each PTP Instance represents a distinct instance of PTP implementation (i.e. distinct Ordinary Clock, Boundary Clock, or Transparent Clock), maintaining a distinct time. PTP Instances may be created or deleted dynamically in implementations that support dynamic create/delete.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance-number</td>
<td>uint32</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The instance-list is indexed using a number that is unique per PTP Instance within the PTP Node, applicable to the management context only (i.e. not used in PTP messages). The domain-number of the PTP Instance is not used as the key to instance-list, since it is possible for a PTP Node to contain multiple PTP Instances using the same domain-number.</td>
<td>8.1.4.2 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>default-ds</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>The default data set of the PTP Instance.</td>
<td>8.2.1 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>current-ds</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Provides current data from operation of the protocol.</td>
<td>8.2.2 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>parent-ds</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Provides data learned from the parent of this PTP Instance (i.e. master port on the other side of the path/link).</td>
<td>8.2.3 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>time-properties-ds</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Provides data learned from the current Grandmaster PTP Instance.</td>
<td>8.2.4 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>description-ds</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>mandatory</td>
<td>Provides descriptive information for the PTP Instance.</td>
<td>8.2.5 of IEEE Std 1588-2019</td>
</tr>
<tr>
<td>Feature Code</td>
<td>Description</td>
<td>optional</td>
<td>optional</td>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fault-log-ds^9</td>
<td>Represents an optional mechanism for logging of faults that occur in the PTP Instance. If one member of fault-log-ds is supported, all members shall be supported.</td>
<td>container</td>
<td>rw</td>
<td>8.2.6 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>path-trace-ds^10</td>
<td>Provides data for the optional path trace mechanism.</td>
<td>container</td>
<td>rw</td>
<td>16.2 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>alternate-timescale-ds^11</td>
<td>Provides data for the optional alternate timescale offsets mechanism.</td>
<td>container</td>
<td>rw</td>
<td>16.3 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>holdover-upgrade-ds^12</td>
<td>Provides data for the optional holdover upgrade mechanism.</td>
<td>container</td>
<td>rw</td>
<td>16.4 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>grandmaster-cluster-ds^13</td>
<td>Provides data for the optional grandmaster cluster mechanism.</td>
<td>container</td>
<td>rw</td>
<td>17.2.3 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>acceptable-master-ds^14</td>
<td>Provides data for the optional acceptable master table mechanism.</td>
<td>container</td>
<td>rw</td>
<td>17.5.3 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>performance-monitoring-ds^15</td>
<td>Provides data for the optional performance monitoring mechanism, scoped to the PTP Instance.</td>
<td>container</td>
<td>rw</td>
<td>Annex J of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
<tr>
<td>enhanced-metrics-ds^16</td>
<td>Provides data for the optional enhanced synchronization accuracy metrics mechanism.</td>
<td>container</td>
<td>rw</td>
<td>16.12 of IEEE Std 1588-2019</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

^9 if-feature "fault-log"

^10 if-feature "path-trace"

^11 if-feature "alternate-timescale"

^12 if-feature "holdover-upgrade"

^13 if-feature "grandmaster-cluster"

^14 if-feature "acceptable-master"

^15 if-feature "performance-monitoring"

^16 if-feature "enhanced-metrics"
11 Scheduled Traffic model (ieee802-dot1q-sched)

11.1 Overview

The Scheduled Traffic model is defined in IEEE 802.1Qcw-d1-2.

11.1.1 Main Features

The module ieee802-dot1q-shed comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

11.1.1.1 Feature scheduled-traffic

Enhancements for Scheduled Traffic supported.

This feature is mandatory in 60802 for ccA.

11.2 Tree Diagram

```paradox
augment /if:interfaces/if:interface/dot1q:bridge-port:
 +++rw gate-parameter-table {scheduled-traffic}?
 +++rw queue-max-sdu-table* [traffic-class]
 | +++rw traffic-class dot1q-types:traffic-class-type
 | +++rw queue-max-sdu? uint32
 | +++ro transmission-overrun? yang:counter64
 +++rw gate-enabled? boolean
 +++rw admin-gate-states? uint8
 +++ro oper-gate-states? uint8
 +++rw admin-control-list
 | +++rw gate-control-entry* [index]
 | +++rw index uint32
```
	rw operation-name	identityref
	rw time-interval-value?	uint32
	rw gate-states-value	uint8
	ro oper-control-list	
	ro gate-control-entry* [index]	
	ro index	uint32
	ro operation-name	identityref
	ro time-interval-value?	uint32
	ro gate-states-value	uint8
	rw admin-cycle-time	
	rw numerator?	uint32
	rw denominator?	uint32
	ro oper-cycle-time	
	ro numerator?	uint32
	ro denominator?	uint32
	rw admin-cycle-time-extension?	uint32
	ro oper-cycle-time-extension?	uint32
	rw admin-base-time	
	rw seconds?	uint64
	rw nanoseconds?	uint32
	ro oper-base-time	
	ro seconds?	uint64
	ro nanoseconds?	uint32
	rw config-change?	boolean
	ro config-change-time	
	ro seconds?	uint64
	ro nanoseconds?	uint32
	ro tick-granularity?	uint32
	ro current-time	
	ro seconds?	uint64
	ro nanoseconds?	uint32
	ro config-pending?	boolean
	ro config-change-error?	yang:counter64
	rw supported-list-max?	uint32
	rw supported-cycle-max	
	rw numerator?	uint32
	rw denominator?	uint32
	rw supported-interval-max?	uint32
11.3 Usage of YANG Data Objects

The module ieeedot1q-sched does not define a separate YANG tree. It only augments the ietf-interfaces model.

12 Preemption model (ieee802-dot1q-preemption)

12.1 Overview

The Preemption model is defined in IEEE 802.1Qcw-d1-2.

12.1.1 Main Features

The module ieee-802-dot1q-preemption comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

12.1.1.1 Feature frame-preemption

Frame preemption supported.

This feature is mandatory in 60802 for ccA.

12.2 Tree Diagram

module: ieee802-dot1q-preemption

augment /if:interfaces/if:interface/dot1q:bridge-port:
  +++rw frame-preemption-parameters {frame-preemption}?
    +++rw frame-preemption-status-table* [priority]
      |  +++rw priority dot1q-types:priority-type
      |  +++rw frame-preemption-status? enumeration
      +++rc hold-advance? uint32
      +++rc release-advance? uint32
      +++rc preemption-active? boolean
      +++rc hold-request? enumeration

12.3 Usage of YANG Data Objects

The module ieeedot1q-preemption does not define a separate YANG tree. It only augments the ietf-interfaces model.
13 YANG Push model (ietf-yang-push)

13.1 Overview

The YANG Push model is defined in RFC 8641.

13.1.1 Main Features

The module ietf-yang-push comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

13.1.1.1 Feature on-change

This feature indicates that on-change triggered subscriptions are supported.

This feature is mandatory in 60802.

13.2 Tree Diagram

module: ietf-yang-push

augment /sn:establish-subscription/sn:input:
  +--- w (update-trigger)?
    +---:(periodic)
      | +--- w periodic!
      |     +--- w period centiseconds
      |     +--- w anchor-time? yang:date-and-time
    +---:(on-change) {on-change}?
      +--- w on-change!
      | +--- w dampening-period? centiseconds
      | +--- w sync-on-start? boolean
      | +--- w excluded-change* change-type
augment /sn:establish-subscription/sn:input/sn:target:
  +---:(datastore)
    +--- datastore identityref
    +--- (selection-filter)?
      +---:(by-reference)
      | +--- selection-filter-ref selection-filter-ref
    +---:(within-subscription)
      +--- (filter-spec)?
        +---:(datastore-subtree-filter)
augment /sn:modify-subscription/sn:input:
  +---w (update-trigger)?
    +---:(periodic)
      |  +---w periodic!
      |   +---w period  centiseconds
      |   +---w anchor-time?  yang:date-and-time
    +---:(on-change) (on-change)?
      +---w on-change!
        +---w dampening-period?  centiseconds
augment /sn:modify-subscription/sn:input/sn:target:
  +---:(datastore)
    +--- datastore  identityref
    +--- (selection-filter)?
      +---:(by-reference)
        |  +--- selection-filter-ref  selection-filter-ref
      +---:(within-subscription)
        +--- (filter-spec)?
          +---:(datastore-subtree-filter)
            |  +---:(datastore-xpath-filter)
                +--- datastore-subtree-filter?  <anydata> (sn:subtree)?
                +--- datastore-xpath-filter?  yang:xpath1.0 (sn:xpath)?
augment /sn:subscription-started:
  +---ro (update-trigger)?
    +---:(periodic)
      |  +---ro periodic!
      |   +---ro period  centiseconds
      |   +---ro anchor-time?  yang:date-and-time
    +---:(on-change) (on-change)?
      +---ro on-change!
        +---ro dampening-period?  centiseconds
        +---ro sync-on-start?  boolean
        +---ro excluded-change* change-type
augment /sn:subscription-started/sn:target:
  +---:(datastore)
    +--- datastore  identityref
    +--- (selection-filter)?
      +---:(by-reference)
| --- selection-filter-ref | selection-filter-ref
| --- (within-subscription)
| --- (filter-spec)?
| --- (datastore-subtree-filter)
| | --- datastore-subtree-filter? <anydata> (sn:subtree)?
| --- (datastore-xpath-filter)
| | --- datastore-xpath-filter? yang:xpath1.0 (sn:xpath)?

augment /sn:subscription-modified:
| --- (periodic)
| | --- ro periodic!
| | | --- ro period centiseconds
| | | --- ro anchor-time? yang:date-and-time
| | --- (on-change) (on-change)?
| | | --- ro on-change!
| | | | --- ro dampening-period? centiseconds
| | | | --- ro sync-on-start? boolean
| | | | --- ro excluded-change* change-type

augment /sn:subscription-modified/sn:target:
| --- (datastore)
| | --- datastore identityref
| | --- (selection-filter)?
| | | --- (by-reference)
| | | | --- selection-filter-ref selection-filter-ref
| | | --- (within-subscription)
| | | | --- (filter-spec)?
| | | | --- (datastore-subtree-filter)
| | | | | --- datastore-subtree-filter? <anydata> (sn:subtree)?
| | | | --- (datastore-xpath-filter)
| | | | | --- datastore-xpath-filter? yang:xpath1.0 (sn:xpath)?

augment /sn:subscriptions/sn:subscription:
| --- (update-trigger)?
| | --- (within-subscription)
| | | --- datastore-subtree-filter? <anydata> (sn:subtree)?
| | | --- datastore-xpath-filter? yang:xpath1.0 (sn:xpath)?

augment /sn:filters:
| --- (filter-spec)?
| | --- (datastore-subtree-filter)
| | | --- datastore-subtree-filter? <anydata> (sn:subtree)?
| | | --- datastore-xpath-filter? yang:xpath1.0 (sn:xpath)?

augment /sn:subscriptions/sn:subscription:
| --- (update-trigger)?
++--:(periodic)
|   +--rw periodic!
|     +--rw period centiseconds
|     +--rw anchor-time? yang:date-and-time
++--:(on-change) {on-change)?
   +--rw on-change!
       +--rw dampening-period? centiseconds
       +--rw sync-on-start? boolean
       +--rw excluded-change* change-type
augment /sn:subscriptions/sn:subscription/sn:target:
++--:(datastore)
   +--rw datastore identityref
   +--rw (selection-filter)?
     +--:(by-reference)
       |   +--rw selection-filter-ref selection-filter-ref
     +--:(within-subscription)
       +--rw (filter-spec)?
         +--:(datastore-subtree-filter)
           |   +--rw datastore-subtree-filter? <anydata> {sn:subtree}? 
         +--:(datastore-xpath-filter)
           +--rw datastore-xpath-filter? yang:xpath1.0 {sn:xpath}?

rpcs:
   +---x resync-subscription {on-change)?
     +----w input
       +----w id sn:subscription-id

notifications:
   +---n push-update
     |   +---ro id? sn:subscription-id
     |   +---ro datastore-contents? <anydata>
     |   +---ro incomplete-update? empty
   +---n push-change-update {on-change)?
     +---ro id? sn:subscription-id
     +--ro datastore-changes
         |   +--ro yang-patch
         |       +--ro patch-id string
         |       +--ro comment? string
         |       +--ro edit* [edit-id]
         |       +--ro edit-id string
13.3 Usage of YANG Data Objects

The module ietf-yang-push does not define a separate YANG tree. It only augments the ietf-subscribed-notifications model and defines an RPC and notifications.

13.3.1 Remote Procedure Calls

13.3.1.1 resync-subscription

This RPC allows a subscriber of an active on-change subscription to request a full push of objects.

if-feature "on-change"

13.3.2 Notifications

13.3.2.1 push-update

This notification contains a push update that in turn contains data subscribed to via a subscription.

This notification is mandatory for 60802 devices.

13.3.2.2 push-change-update

This notification contains an on-change push update.

This notification is mandatory for 60802 devices.

14 Subscription to YANG Notifications model (ietf-subscribed-notifications)

14.1 Overview

The Subscription to YANG Notifications model is defined in RFC 8639.
14.1.1 Main Features

The module ietf-interfaces comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

14.1.1.1 Feature configured

This feature indicates that configuration of subscriptions is supported.

This feature is mandatory in 60802.

14.1.1.2 Feature dscp

This feature indicates that a publisher supports the ability to set the Differentiated Services Code Point (DSCP) value in outgoing packets.

This feature is optional in 60802.

14.1.1.3 Feature encode-json

This feature indicates that JSON encoding of notification messages is supported.

This feature is optional in 60802.

14.1.1.4 Feature encode-xml

This feature indicates that XML encoding of notification messages is supported.

This feature is mandatory in 60802.

14.1.1.5 Feature interface-designation

This feature indicates that a publisher supports sourcing all receiver interactions for a configured subscription from a single designated egress interface.

This feature is optional in 60802.

14.1.1.6 Feature qos

This feature indicates that a publisher supports absolute dependencies of one subscription’s traffic over another as well as weighted bandwidth sharing between subscriptions. Both of these are Quality of Service (QoS) features that allow differentiated treatment of notification messages between a publisher and a specific receiver.

This feature is optional in 60802.

14.1.1.7 Feature replay

This feature indicates that historical event record replay is supported. With replay, it is possible for past event records to be streamed in chronological order.
14.1.1.8 Feature subtree

This feature indicates support for YANG subtree filtering.
Reference: "RFC 6241: Network Configuration Protocol (NETCONF), Section 6
This feature is mandatory in 60802.

14.1.1.9 Feature supports-vrf

This feature indicates that a publisher supports VRF configuration for configured subscriptions.
Reference "RFC 8529: YANG Data Model for Network Instances, Section 6
This feature is optional in 60802.

14.1.1.10 Feature xpath

This feature indicates support for XPath filtering.
This feature is optional in 60802.

14.2 Tree Diagram

module: ietf-subscribed-notifications
  +---ro streams
    |   +---ro stream* [name]
    |     +---ro name [string]
    |     +---ro description? [string]
    |     +---ro replay-support? [empty {replay}]
    |     +---ro replay-log-creation-time [yang:date-and-time {replay}]
    |     +---ro replay-log-aged-time? [yang:date-and-time {replay}]
    +---rw filters
      |   +---rw stream-filter* [name]
      |     +---rw name [string]
      |     +---rw (filter-spec)?
      |        +---(stream-subtree-filter)
      |          |   +---rw stream-subtree-filter? [anydata] {subtree}?
      |        +---(stream-xpath-filter)
      |          |   +---rw stream-xpath-filter? [yang:xpath1.0 {xpath}]
      +---rw subscriptions
        +---rw subscription* [id]
+-rw id
  +--rw (target)
     |  +--:(stream)
     |  |  +--rw (stream-filter)?
     |  |  |  +--:(by-reference)
     |  |  |  |  +--rw stream-filter-name
     |  |  |  +--:(within-subscription)
     |  |  |  |  +--rw (filter-spec)?
     |  |  |  |  |  +--:(stream-subtree-filter)
     |  |  |  |  |  |  +--rw stream-subtree-filter? <anydata> {subtree}?
     |  |  |  |  |  |  |  +--:(stream-xpath-filter)
     |  |  |  |  |  |  |  |  +--rw stream-xpath-filter? yang: xpath1.0 {xpath}?
     |  |  |  |  |  +--rw stream
     |  |  |  |  +--ro replay-start-time?
     |  |  |  +--rw configured-replay?
     |  |  |  +--rw stop-time?
     |  |  +--rw dscp?
     |  |  +--rw weighting?
     |  |  +--rw dependency?
     |  |  +--rw transport?
     |  |  +--rw encoding?
     |  |  +--rw purpose?
     |  +--rw (notification-message-origin)? {configured}?
        |  +--:(interface-originated)
        |  |  +--rw source-interface?
        |  |  |  +--:(address-originated)
        |  |  |  |  +--rw source-vrf?
        |  |  |  |  |  +--ro configured-subscription-state?
        |  |  |  |  |  +--rw receivers
        |  |  |  |  |  |  +--rw receiver* [name]
        |  |  |  |  |  |  |  +--rw name
        |  |  |  |  |  |  |  +--ro sent-event-records?
        |  |  |  |  |  |  |  +--ro excluded-event-records?
        |  |  |  |  |  |  |  +--ro state
        |  |  |  |  |  |  |  +--x reset {configured}?
        |  |  |  |  |  |  |  +--ro output
        |  |  |  |  |  |  |  |  +--ro time yang:date-and-time

rpcs:
+---x establish-subscription
  | +---w input
  |   | +---w id
  |   | +---w (target)
  |   |   | +---:(stream)
  |   |   |   | +---w (stream-filter)?
  |   |   |   |   | +---:(by-reference)
  |   |   |   |   |   | +---w stream-filter-name
  |   |   |   |   |   | +---:(within-subscription)
  |   |   |   |   |   |   | +---w (filter-spec)?
  |   |   |   |   |   |   |   | +---:(stream-subtree-filter)
  |   |   |   |   |   |   |   |   | +---w stream-subtree-filter?
  |   |   |   |   |   |   |   |   |   | <anydata> {subtree}?
  |   |   |   |   |   |   |   | +---w stream-filter
  |   |   |   |   |   | +---w (stream-xpath-filter)
  |   |   |   |   |   |   | +---w stream-xpath-filter?
  |   |   |   |   |   |   |   | yang:xpath1.0 {xpath}?
  |   |   | +---w stream
  |   |   | +---w replay-start-time?
  |   |   | +---w stop-time?
  |   |   | +---w dscp?
  |   |   | +---w weighting?
  |   |   | +---w dependency?
  |   |   | +---w encoding?
  |   +---ro output
  |       | +---ro id
  |       | +---ro replay-start-time-revision?
  |       +---x modify-subscription
  |         | +---w id
  |         | +---w id
  |         +---w (target)
  |         | +---:(stream)
  |         |   | +---w (stream-filter)?
  |         |   |   | +---:(by-reference)
  |         |   |   |   | +---w stream-filter-name
  |         |   |   |   | +---:(within-subscription)
  |         |   |   |   |   | +---w (filter-spec)?
  |         |   |   |   |   |   | +---:(stream-subtree-filter)
  |         |   |   |   |   |   |   | +---w stream-subtree-filter?
  |         |   |   |   |   |   |   |   | <anydata> {subtree}?
  |         |   |   |   |   |   |   | +---w stream-xpath-filter
  |         |   |   |   |   |   |   |   | +---w stream-xpath-filter?
  |         |   |   |   |   |   |   |   | yang:xpath1.0 {xpath}?
  |         |   |   |   |   | +---w stop-time?
  |         |   |   |   | +---w dscp?
  |         |   |   |   | +---w weighting?
  |         |   |   |   | +---w dependency?
  |         |   |   |   | +---w encoding?
  |         +---x delete-subscription
  |             | +---w id
  |             +---w input
|        +++- w id     subscription-id
|++++- x kill-subscription
|++++- w input
|++++- w id     subscription-id

notifications:
|++++- n replay-completed {replay}?
||++++- ro id     subscription-id
|++++- n subscription-completed {configured}?
||++++- ro id     subscription-id
|++++- n subscription-modified
||++++- ro id     subscription-id
||++++- ro (target)
|| |++++- (stream)
|| ||++++- (stream-filter)?
|| | | |++++- (by-reference)
|| | | |++++- (within-subscription)
|| | | | |++++- (filter-spec)?
|| | | | |++++- (stream-subtree-filter)
|| | | | | |++++- (stream-xpath-filter)
|| | | | | |++++- stream-xpath-filter? yang:xpath1.0 {xpath}?
|| | | | | |++++- stream-ref
|| | | |++++- ro replay-start-time? yang:date-and-time {replay}?
||++++- ro stop-time?
||++++- ro dscp?
||++++- ro weighting?
||++++- ro dependency?
||++++- ro transport?
||++++- ro encoding?
||++++- ro purpose?
||++++- n subscription-resumed
||++++- ro id     subscription-id
|++++- n subscription-started {configured}?
||++++- ro id     subscription-id
||++++- ro (target)
|| |++++- (stream)
|| | |++++- (stream-filter)?
|| | | |++++- (by-reference)
14.3 Usage of YANG Data Objects

14.3.1 List /ietf-subscribed-notifications/streams/stream

The list /ietf-subscribed-notifications/streams/stream identifies the built-in event streams that are supported by the publisher.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>A handle for a system-provided event stream made up of a sequential set of event records, each of which is characterized by its own domain and semantics.</td>
<td>-</td>
</tr>
<tr>
<td>description</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>A description of the event stream, including such information as the type of</td>
<td>-</td>
</tr>
<tr>
<td>Feature Name</td>
<td>Type</td>
<td>Access</td>
<td>Usage (YANG)</td>
<td>Usage (60802)</td>
<td>Description</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>--------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>replay-support</td>
<td>empty</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Indicates that event record replay is available on this event stream.</td>
<td>-</td>
</tr>
<tr>
<td>replay-log-creation-time</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The timestamp of the creation of the log used to support the replay function on this event stream. This time might be earlier than the earliest available information contained in the log. This object is updated if the log resets for some reason.</td>
<td>-</td>
</tr>
<tr>
<td>replay-log-aged-time</td>
<td>yang:date-and-time</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The timestamp associated with the last event record that has been aged out of the log. This timestamp identifies how far back in history this replay log extends, if it doesn’t extend back to the ’replay-log-creation-time’. This object MUST be present if replay is supported and any event records have been aged out of the log.</td>
<td>-</td>
</tr>
</tbody>
</table>

14.3.2 List /ietf-subscribed-notifications/filters/stream-filter

The list /ietf-subscribed-notifications/filters/stream-filter contains a list of configurable filters that can be applied to subscriptions. This facilitates the reuse of complex filters once defined.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>string</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>filter-spec</td>
<td>choice</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The content filter specification for this request.</td>
<td></td>
</tr>
</tbody>
</table>

---

17 `if-feature "replay"
18 `if-feature "replay"
19 `if-feature "replay"
14.3.3 List /ietf-subscribed-notifications/subscriptions/subscription

The list /ietf-subscribed-notifications/subscriptions/subscription contains the list of currently active subscriptions, i.e., subscriptions that are currently in effect, used for subscription management and monitoring purposes. This includes subscriptions that have been set up via RPC primitives as well as subscriptions that have been established via configuration.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>subscription-id</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Identifier of a subscription; unique in a given publisher.</td>
<td>-</td>
</tr>
<tr>
<td>target</td>
<td>choice</td>
<td>rw</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Identifies the source of information against which a subscription is being applied as well as specifics on the subset of information desired from that source.</td>
<td>-</td>
</tr>
<tr>
<td>stop-time</td>
<td>yang:date-and-time</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Identifies a time after which notification messages for a subscription should not be sent.</td>
<td>-</td>
</tr>
<tr>
<td>dscp&lt;sup&gt;20&lt;/sup&gt;</td>
<td>inet:dscp</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>The desired network transport priority level.</td>
<td>-</td>
</tr>
<tr>
<td>weighting&lt;sup&gt;21&lt;/sup&gt;</td>
<td>uint8</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Relative weighting for a subscription.</td>
<td>-</td>
</tr>
<tr>
<td>dependency&lt;sup&gt;22&lt;/sup&gt;</td>
<td>subscription-id</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>Provides the ’subscription-id’ of a parent subscription.</td>
<td>-</td>
</tr>
<tr>
<td>transport&lt;sup&gt;23&lt;/sup&gt;</td>
<td>transport</td>
<td>rw</td>
<td>optional</td>
<td>optional</td>
<td>For a configured subscription, this leaf specifies the transport used to deliver messages destined for all receivers of that subscription.</td>
<td>-</td>
</tr>
</tbody>
</table>

---

<sup>20</sup> if-feature "dscp"
<sup>21</sup> if-feature "qos"
<sup>22</sup> if-feature "qos"
<sup>23</sup> if-feature "configured"
encoding	encoding	rw	optional	optional	The type of encoding for notification messages.	-
purpose	string	rw	optional	optional	Open text allowing a configuring entity to embed the originator or other specifics of this subscription.	-
notification-message-origin	choice	rw	optional	optional	Identifies the egress interface on the publisher from which notification messages are to be sent.	-
configured-subscription-state	enumeration	ro	optional	optional	The presence of this leaf indicates that the subscription originated from configuration, not through a control channel or RPC. The value indicates the state of the subscription as established by the publisher.	-
receivers	container	rw	mandatory	mandatory	Set of receivers in a subscription.	-

14.4 Remote Procedure Calls

14.4.1 establish-subscription

This RPC allows a subscriber to create (and possibly negotiate) a subscription on its own behalf.

14.4.2 modify-subscription

This RPC allows a subscriber to modify a dynamic subscription’s parameters.

14.4.3 delete-subscription

This RPC allows a subscriber to delete a subscription that was previously created by that same subscriber using the 'establish-subscription' RPC.

24 if-feature "configured"
25 if-feature "configured"
26 if-feature "configured"
14.4.4 kill-subscription

This RPC allows an operator to delete a dynamic subscription without restrictions on the originating subscriber or underlying transport session.

14.5 Notifications

14.5.1 replay-completed

This notification is sent to indicate that all of the replay notifications have been sent.

if-feature "replay"

14.5.2 subscription-completed

This notification is sent to indicate that a subscription has finished passing event records, as the 'stop-time' has been reached.

if-feature "configured"

14.5.3 subscription-modified

This notification indicates that a subscription has been modified.

14.5.4 subscription-resumed

This notification indicates that a subscription that had previously been suspended has resumed. Notifications will once again be sent.

14.5.5 subscription-started

This notification indicates that a subscription has started and notifications will now be sent.

if-feature "configured"

14.5.6 subscription-suspended

This notification indicates that a suspension of the subscription by the publisher has occurred. No further notifications will be sent until the subscription resumes.

14.5.7 subscription-terminated

This notification indicates that a subscription has been terminated.
15 LLDP extension YANG model for the basicSet (ieee802-dot1q-lldp-basic-tlv)

15.1 Overview

The LLDP extension tlvs for the basicSet model is defined in IEEE 802.1CBcz/D12.0.

15.1.1 Main Features

The module ietf-interfaces comprises the feature-definitions listed in this section.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

15.1.1.1 Feature congestion-isolation

Feature Congestion Indication.

This feature is not required in 60802.

15.2 Tree Diagram

module: ieee802-dot1q-lldp-basic-tlv

  augment /lldp:lldp:
    +---rw vid-usage-digest-tlv-extension
        |    +---ro vid-usage-digest? uint32
        +---rw management-vid-tlv-extension
            +---rw management-vid? dot1qtypes:vlanid
  augment /lldp:lldp:port:
    +---rw tlvs-tx-org-basic-enable?          bits
    +---rw port-vlan-id-tlv-extension
        |    +---rw port-vlan-id?       dot1qtypes:vlanid
        +---rw port-and-protocol-vlan-id-extension
            |    +---rw port-vlan-id?       dot1qtypes:vlanid
            |    +---rw flags?           bits
            +---rw port-vlan-name-tlv-extension
                |    +---rw vlan-id?          dot1qtypes:vlanid
                |    +---rw port-vlan-name?   string
                +---rw protocol-identity-tlv-extension
                    |    +---rw protocol-id?      string
                    +---rw protocol-identity?  string
                +---rw link-aggregation-tlv-extension
---rw aggregation-status?   bits
---rw aggregated-port-id?  uint32
augment /lldp:lldp/lldp:port/lldp:remote-systems-data:
  +---ro port-vlan-id-tlv-extension
      |   +---ro port-vlan-id?  dot1qtypes:vlanid
      |   +---ro port-and-protocol-vlan-id-extension
      |   |   +---ro port-vlan-id?  dot1qtypes:vlanid
      |   |   +---ro flags?        bits
      +---ro port-vlan-name-tlv-extension
      |   +---ro vlan-id?       dot1qtypes:vlanid
      |   +---ro port-vlan-name? string
      +---ro link-aggregation-tlv-extension
      |   +---ro protocol-identity? string
      |   +---ro aggregation-status? bits
      |   +---ro aggregated-port-id? uint32
      +---ro vid-usage-digest-tlv-extension
      |   +---ro vid-usage-digest? uint32
      +---ro management-vid-tlv-extension
          +---ro management-vid? dot1qtypes:vlanid

15.3 Usage of YANG Data Objects

The module ieee802-dot1q-lldp-basic-tlv does not define a separate YANG tree. It only augments the ieee802-dot1ab-lldp model.

16 System Capabilities model (ietf-system-capabilities)

16.1 Overview

The module "ietf-system-capabilities" is defined to provide a structure that can be used to discover (as read-only operational state) any YANG related system capability. It is defined in draft-ietf-netconf-capabilities-21.

16.1.1 Main Features

This module imports the feature on-change from ietf-yang-push.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.
16.1.1.1 Feature on-change

This feature indicates that on-change triggered subscriptions are supported.

This feature is mandatory in 60802.

16.2 Tree Diagram

module: ietf-system-capabilities
  +--ro system-capabilities
  |   +--ro datastore-capabilities* [datastore]
  |       +--ro datastore -> /yanglib:yang-library/datastore/name
  |       +--ro per-node-capabilities* []
  |          +--ro (node-selection)?
  |              +--:(node-selector)
  |                  +--ro node-selector? nacm:node-instance-identifier

16.3 Usage of YANG Data Objects

16.3.1 List /ietf-system-capabilities/datastore-capabilities

Capabilities values per datastore.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>datastore</td>
<td>leafref</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>The datastore for which capabilities are defined.</td>
<td>-</td>
</tr>
<tr>
<td>per-node-capabilities</td>
<td>list</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Each list entry specifies capabilities for the selected data nodes. The same capabilities apply for the data nodes in the subtree below the selected nodes.</td>
<td>-</td>
</tr>
</tbody>
</table>

16.4 Augmentation by Module ietf-notification-capabilities (draft-ietf-notification-capabilities)

16.4.1 Additional Container /ietf-system-capabilities/subscription-capabilities

Capabilities related to YANG-Push subscriptions and notifications
<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>max-nodes-per-update</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Maximum number of data nodes that can be sent in an update.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore. Updates, the 'update-too-big' error/identity</td>
</tr>
<tr>
<td>periodic-notifications-supported</td>
<td>notification-support</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Specifies whether the publisher is capable of sending 'periodic' notifications for the selected data nodes including any subtrees that may exist below them.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, 'periodic' subscription concept</td>
</tr>
<tr>
<td>update-period</td>
<td>choice</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Supported update period value or values for 'periodic' subscriptions.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, 'periodic' subscription concept</td>
</tr>
<tr>
<td>on-change-supported(^{27})</td>
<td>notification-support</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td>Specifies whether the publisher is capable of sending 'on-change' notifications for the selected data nodes and the subtree below them.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, on-change concept</td>
</tr>
<tr>
<td>minimum-dampening-period(^{28})</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The minimum dampening-period supported for 'on-change' subscriptions for the selected data nodes.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, the dampening-period leaf in the ietf-yang-push YANG module</td>
</tr>
<tr>
<td>supported-excluded-change-type(^{29})</td>
<td>union</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The change types that can be excluded in YANG-Push subscriptions for the selected data nodes.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, the 'on-change' concept</td>
</tr>
</tbody>
</table>

\(^{27}\) if-feature "yp:on-change"

\(^{28}\) if-feature "yp:on-change"

\(^{29}\) if-feature "yp:on-change"
### 16.4.2 Additional Container /ietf-system-capabilities/datastore-capabilities/per-node-capabilities/subscription-capabilities

Capabilities related to YANG-Push subscriptions and notifications

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>max-nodes-per-update</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Maximum number of data nodes that can be sent in an update.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore. Updates, the ‘update-too-big’ error/identity</td>
</tr>
<tr>
<td>periodic-notifications-supported</td>
<td>notification-support</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Specifies whether the publisher is capable of sending ’periodic’ notifications for the selected data nodes including any subtrees that may exist below them.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, ’periodic’ subscription concept</td>
</tr>
<tr>
<td>update-period</td>
<td>choice</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Supported update period value or values for ’periodic’ subscriptions.</td>
<td></td>
</tr>
<tr>
<td>on-change-supported(^{30})</td>
<td>notification-support</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Specifies whether the publisher is capable of sending ’on-change’ notifications for the selected data nodes and the subtree below them.</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore Updates, on-change concept</td>
</tr>
<tr>
<td>minimum-dampening-period(^{31})</td>
<td>uint32</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The minimum dampening-period supported for ’on-change’</td>
<td>RFC 8641: Subscription to YANG Notifications for Datastore</td>
</tr>
</tbody>
</table>

\(^{30}\) if-feature "yp:on-change"

\(^{31}\) if-feature "yp:on-change"
17 Notification Capabilities model (ietf-notification-capabilities)

17.1 Overview

The module "ietf-notification-capabilities" provides YANG-Push related capability information. It is defined in draft-ietf-netconf-capabilities-21.

17.1.1 Main Features

This module imports the feature on-change from ietf-yang-push.

It is optional for a server to support features, so these functionalities are optional in the YANG tree.

17.1.1.1 Feature on-change

This feature indicates that on-change triggered subscriptions are supported.

This feature is mandatory in 60802.

17.2 Tree Diagram

module: ietf-notification-capabilities
    augment /sys:system-capabilities:
        +--ro subscription-capabilities
            +--ro max-nodes-per-update? uint32

32 if-feature "yp:on-change"
17.3 Usage of YANG Data Objects

The module ietf-notification-capabilities does not define a separate YANG tree. It only augments the ietf-system-capabilities model.

18 NACM model (ietf-netconf-acm)

18.1 Overview

The NACM model is defined in RFC8341.
18.2 Tree Diagram

module: ietf-netconf-acm

```yang
+++rw nacm
 +++rw enable-nacm? boolean
 +++rw read-default? action-type
 +++rw write-default? action-type
 +++rw exec-default? action-type
 +++rw enable-external-groups? boolean
 +++ro denied-operations yang:zero-based-counter32
 +++ro denied-data-writes yang:zero-based-counter32
 +++ro denied-notifications yang:zero-based-counter32
 +++rw groups
 | +++rw group* [name]
 | | +++rw name group-name-type
 | | +++rw user-name* user-name-type
 +++rw rule-list* [name]
 | +++rw name string
 | +++rw group* union
 | +++rw rule* [name]
 | +++rw name string
 | +++rw module-name? union
 | +++rw (rule-type)?
 | | +++:(protocol-operation)
 | | | +++rw rpc-name? union
 | | +++:(notification)
 | | | +++rw notification-name? union
 | | +++:(data-node)
 | | | +++rw path node-instance-identifier
 | +++rw access-operations? union
 | +++rw action action-type
 | +++rw comment? string
```

18.3 Usage of YANG Data Objects

Editor's Note: 60802 usage must be evaluated by a security specialist

18.3.1 Container /ietf-netconf-acm/nacm

Parameters for NETCONF access control model.
<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (Yang)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>enable-nacm</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>Enables or disables all NETCONF access control enforcement.</td>
<td>-</td>
</tr>
<tr>
<td>read-default</td>
<td>action-type</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>Controls whether read access is granted if no appropriate rule is found for a particular read request.</td>
<td>-</td>
</tr>
<tr>
<td>write-default</td>
<td>action-type</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>Controls whether create, update, or delete access is granted if no appropriate rule is found for a particular write request.</td>
<td>-</td>
</tr>
<tr>
<td>exec-default</td>
<td>action-type</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>Controls whether exec access is granted if no appropriate rule is found for a particular protocol operation request.</td>
<td>-</td>
</tr>
<tr>
<td>enable-external-groups</td>
<td>boolean</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>Controls whether the server uses the groups reported by the NETCONF transport layer when it assigns the user to a set of NACM groups. If this leaf has the value 'false', any group names reported by the transport layer are ignored by the server.</td>
<td>-</td>
</tr>
<tr>
<td>denied-operations</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Number of times since the server last restarted that a protocol operation request was denied.</td>
<td>-</td>
</tr>
<tr>
<td>denied-data-writes</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Number of times since the server last restarted that a protocol operation request to alter a configuration datastore was denied.</td>
<td>-</td>
</tr>
<tr>
<td>denied-notifications</td>
<td>yang:zero-based-counter32</td>
<td>ro</td>
<td>mandatory</td>
<td>mandatory</td>
<td>Number of times since the server last restarted that a notification was dropped for a subscription because access to the event type was denied.</td>
<td>-</td>
</tr>
<tr>
<td>groups</td>
<td>container</td>
<td>rw</td>
<td>optional</td>
<td>???</td>
<td>NETCONF access control groups. Contains a list of configured groups.</td>
<td>-</td>
</tr>
</tbody>
</table>
19  NMDA model (ietf-datastores and ietf-origin)

19.1  Overview

The NMDA model is defined in RFC 8342.

19.2  Tree Diagram

The model doesn’t define leaves and thus has no tree diagram.

19.3  Usage of YANG Data Objects

The model doesn’t define leaves. It merely defines an extension do NETCONF/YANG for new datastores.

20  NETCONF Monitoring model (ietf-netconf-monitoring)

20.1  Overview

The NETCONF monitoring model is defined in RFC 6022.

20.2  Tree Diagram

module: ietf-netconf-monitoring
  +--ro netconf-state
    +--ro capabilities
      |   +--ro capability*  inet:uri
    +--ro datastores
      |   +--ro datastore* [name]
      |     +--ro name  netconf-datastore-type
      |     +--ro locks!
      |     |   +--ro (lock-type)?
      |     |     +--:(global-lock)
      |     |     +--ro global-lock
| ---ro locked-by-session | uint32 |
| ---ro locked-time | yang:date-and-time |
| ---:(partial-lock) |
| ---ro partial-lock* [lock-id] |
---ro lock-id	uint32
---ro locked-by-session	uint32
---ro locked-time	yang:date-and-time
---ro select*	xpath1.0
---ro locked-node*	instance-identifier

---ro schemas
| ---ro schema* [identifier version format] |
---ro identifier	string
---ro version	string
---ro format	identityref
---ro namespace	inet:uri
---ro location*	union

---ro sessions
| ---ro session* [session-id] |
---ro session-id	uint32
---ro transport	identityref
---ro username	string
---ro source-host?	inet:host
---ro login-time	yang:date-and-time
---ro in-rpcs?	yang:zero-based-counter32
---ro in-bad-rpcs?	yang:zero-based-counter32
---ro out-rpc-errors?	yang:zero-based-counter32
---ro out-notifications?	yang:zero-based-counter32

---ro statistics
---ro netconf-start-time?	yang:date-and-time
---ro in-bad-hellos?	yang:zero-based-counter32
---ro in-sessions?	yang:zero-based-counter32
---ro dropped-sessions?	yang:zero-based-counter32
---ro in-rpcs?	yang:zero-based-counter32
---ro in-bad-rpcs?	yang:zero-based-counter32
---ro out-rpc-errors?	yang:zero-based-counter32
---ro out-notifications?	yang:zero-based-counter32

rpcs:
  ---x get-schema
  ---w input
20.3 Usage of YANG Data Objects

20.3.1 Container /ietf-netconf-monitoring/netconf-state

The netconf-state container is the root of the monitoring data model.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>capabilities</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Contains the list of NETCONF capabilities supported by the server.</td>
<td>-</td>
</tr>
<tr>
<td>datastores</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Contains the list of NETCONF configuration datastores.</td>
<td>-</td>
</tr>
<tr>
<td>schemas</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Contains the list of data model schemas supported by the server.</td>
<td>-</td>
</tr>
<tr>
<td>sessions</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>The sessions container includes session-specific data for NETCONF management sessions. The session list MUST include all currently active NETCONF sessions.</td>
<td>-</td>
</tr>
<tr>
<td>statistics</td>
<td>container</td>
<td>ro</td>
<td>optional</td>
<td>optional</td>
<td>Statistical data pertaining to the NETCONF server.</td>
<td>-</td>
</tr>
</tbody>
</table>

20.4 Remote Procedure Calls

20.4.1 get-schema

This operation is used to retrieve a schema from the NETCONF server.
21 YANG Library model (ietf-yang-library)

21.1 Overview

The YANG Library model is defined in RFC 8525.

21.2 Tree Diagram

module: ietf-yang-library
  +--ro yang-library
    |  +--ro module-set* [name]
    |     |  +--ro name string
    |     |  |  +--ro name [name]
    |     |  |   |  +--ro name yang:yang-identifier
    |     |  |   |  +--ro revision? revision-identifier
    |     |  |   |  +--ro namespace inet:uri
    |     |  |   |  +--ro location* inet:uri
    |     |  |   |  +--ro submodule* [name]
    |     |  |   |     |  +--ro name yang:yang-identifier
    |     |  |   |     |  +--ro revision? revision-identifier
    |     |  |   |     |  +--ro location* inet:uri
    |     |  |   |     |  +--ro feature* yang:yang-identifier
    |     |  |   |     |  +--ro deviation* ../..module/name
    |     |  +--ro import-only-module* [name revision]
    |     |     |  +--ro name yang:yang-identifier
    |     |     |  +--ro revision union
    |     |     |  +--ro namespace inet:uri
    |     |     |  +--ro location* inet:uri
    |     |     |  +--ro submodule* [name]
    |     |     |     |  +--ro name yang:yang-identifier
    |     |     |     |  +--ro revision? revision-identifier
    |     |     |     |  +--ro location* inet:uri
    |     |  +--ro schema* [name]
    |     |     |  +--ro name string
    |     |     |  +--ro module-set* ../..module-set/name
    |     |     |  +--ro datastore* [name]
    |     |     |     |  +--ro name ds:datastore-ref
    |     |     |     |  +--ro schema ../..schema/name
    |     |     |  +--ro content-id string
  x--ro modules-state
21.3 Usage of YANG Data Objects

21.3.1 Container /ietf-yang-library/yang-library

Container holding the entire YANG library of this server.

<table>
<thead>
<tr>
<th>Leaf</th>
<th>Type</th>
<th>Access</th>
<th>Usage (YANG)</th>
<th>Usage (60802)</th>
<th>Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>module-set</td>
<td>list</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>schema</td>
<td>list</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>datastore</td>
<td>list</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>content-id</td>
<td>string</td>
<td>ro</td>
<td>optional</td>
<td>mandatory</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21.3.2 Container /ietf-yang-library/modules-state

This container is obsolete and shall not be used for 60802.
21.4 Notifications

21.4.1 yang-library-update

Generated when any YANG library information on the server has changed.

22 NETCONF Base Notifications model (ietf-netconf-notifications)

22.1 Overview

The NETCONF base notifications model is defined in RFC 6470.

22.2 Tree Diagram

module: ietf-netconf-notifications

notifications:
  +----n netconf-config-change
  |    +----ro changed-by
  |    |    |    +----ro (server-or-user)
  |    |    |    |    +----:(server)
  |    |    |    |    |    +----ro server? empty
  |    |    |    |    |    +----ro by-user
  |    |    |    |    |    +----ro username string
  |    |    |    |    |    +----ro session-id nc:session-id-or-zero-type
  |    |    |    |    |    +----ro source-host? inet:ip-address
  |    |    +----ro datastore? enumeration
  |    +----ro edit* []
  |        +----ro target? instance-identifier
  |        +----ro operation? nc:edit-operation-type

+----n netconf-capability-change
  +----ro changed-by
  |    +----ro (server-or-user)
  |    |    +----:(server)
  |    |    |    +----ro server? empty
  |    |    |    +----ro by-user
  |    |    |    +----ro username string
  |    |    +----ro session-id nc:session-id-or-zero-type
22.3 Usage of YANG Data Objects

The model doesn’t define leaves. It merely defines the basic NETCONF notifications.

22.4 Notifications

22.4.1 netconf-config-change

Generated when the NETCONF server detects that the <running> or <startup> configuration datastore has been changed by a management session.

22.4.2 netconf-capability-change

Generated when the NETCONF server detects that the server capabilities have changed. Indicates which capabilities have been added, deleted, and/or modified.

22.4.3 netconf-session-start

Generated when a NETCONF server detects that a NETCONF session has started.
22.4.4 netconf-session-end
Generated when a NETCONF server detects that a NETCONF session has terminated.

22.4.5 netconf-confirmed-commit
Generated when a NETCONF server detects that a confirmed-commit event has occurred.