'Secure Device Identity' Profile for TSN-IA

IEEE Interim Session; January 21, 2022

Kai Fischer, Andreas Furch, Oliver Pfaff

SIEMENS

Problem Statement

- Discuss a 'Secure Device Identity' (IEEE STD 802.1AR-2018) profile for TSN-IA (IEC/IEEE 60802) encompassing:
 - A common **IDevID EE certificate** design for IA-stations: this is meant to be a profile of IEEE STD 802.1AR-2018, chapter 8 '*DevID certificate fields and extensions*'
 - A common '**Supplier information**' template for manufacturers of IA-stations: this is meant to be a (partial) instantiation of IEEE STD 802.1AR-2018, chapter 5.5 '*Supplier information*'
- Motivation:
 - *'Device identity'* addresses use cases such as:
 - Is this piece of equipment an instance of a distinguished type?
 - Was it produced by a specific manufacturer?
 - A 'secure device identity' provides safeguards for such use cases. It also allows to protect the setting-up of security

First Things First

IA-controller, IA-device, bridge...

IA-controller, IA-device, bridge... manufacturer, order ID, serial number, ...

Manufacturer, order ID, serial number, ... protected by end entity certificates and private keys

Background and Rationale

- 1. The IETF mandates security for NETCONF/YANG (RFC 6241) security-always-on
 - Each-and-every NETCONF/YANG exchange must be protected including the initial one(s)
 - This presents a challenge when IA-stations are in factory default state
- 2. The <u>Time-Sensitive Networking Profile for Industrial Automation</u> (CD4 resp. D1.3)
 - Uses NETCONF/YANG for network resource management
 - Requires NETCONF-over-TLS (RFC 7589) as a secure transport for NETCONF/YANG
 - Requires IA-stations to have IDevID credentials and trust anchors (IEEE STD 802.1AR) to be able to
 protect the initial NETCONF/YANG exchanges i.e. safeguarding the security set-up
- 3. Caveat: manufacturer-proprietary IDevID EE certificate designs will end in a 'Secure Device Identity' plethora
 - Custom IDevID EE certificate designs will make it hard to impossible to fulfill fundamental use cases in industrial automation in an efficient and secure way (see next slides for evidence)

→ The 'Secure Device Identity' profile for TSN-IA aims at avoiding this Tower-of-Babel

IDevID EE Certificate Design Decisions

- Assumption: there is a common 'Device Identity' model in a domain comprising information items such as
 a) VendorID, b) DeviceID, c) OrderID, d) SerialNumber, e) HWRevision, f) SWRevision
- Design decisions that have to be made in order to issue IDevID credentials include (but are not limited to):
 - 1. Subset(s): which information of a)..f) shall be represented?
 - 2. Appearance: how shall this information appear (e.g. by-value or by-ref)?
 - 3. Atoms: which ASN.1 data types shall be used?
 - 4. Structure: which ASN.1 structures (tagging/composition) shall be used?
 - 5. *Home*: where to place the resulting structure(s) in an X.509 certificate object?
- Risk: without a common IDevID design, a common 'Device Identity' model **will get fragmented** i.e. represented by many independent IDevID certificate designs (see next slide for implications)

Antipattern: Proprietary IDevID EE Certificate Designs

•

. . .

Key Messages

- A common IDevID EE certificate design, based on IEEE 802.1AR, is needed in industrial automation to solve basic use cases around inventory and setting-up security in an interoperable and efficient way
- The IEC/IEEE 60802 profile for a 'Secure Device Identity' aims at a common design in industrial automation. Note:
 - This is in incubation
 - This deck kicks off the discussion

Hypotheses for Inheriting IDevID EE Certificate Designs

- Can not fly: 802.1AR → manufacturer profile
 - Expecting industrial use cases e.g. "is this instance of a physical component member of a specific class" to work for users that run deployments with products from multiple manufacturers would be naïve
- See slides above for rationale
- - The related responsibilities are meant to be:
 - i. 802.1AR: IEEE 802.1 Security Task Group
 - ii. 60802 profile of i: IEC/IEEE 60802, this slide-deck kicks off a discussion of an IEEE 802.1AR profile for industrial automation
 - iii. Middleware/application-specific sub-profile(s) of ii: organizations owning the corresponding specifications e.g. PI, ODVA, OPCF... (at their own discretion)
 - iv. Manufacturer sub²-profile of ii or iii: individual manufacturers (at their own discretion)

Landing Strips for Naming/Properties in IDevIDs

Subject Field (X.501): No Fit -> Ignored

- Model: information (DIB) is organized in a single, hierarchical tree (DIT) with unique nodes identified by DNs comprised of RDNs
 - Can have custom RDNs but overall information are confined to a singular tree, see e.g. chapter 2.3 "Subject Naming in PKIX Certificates" in RFC 6125
- Awkward to impossible to express a **forest-style** set of information items. This is the case in industrial automation:
 - 1. IEC/IEEE 60802: has an own perception of how to model a HW-based component (IA-station); this '*device*' model should be assumed to come with an own '*device identity*' model
 - 2. IEC 61158: specific types have their own perceptions of how to model the same component along with an specific information model (the backup slides provide an example for PROFINET)
 - 3. OPC-UA: has another perception of how to model the same component along with an OPCF information model
 - 4. DIY: individual manufacturers will have yet another perception of how to model this component along with a DIY information model

subjectAltName Extension: Fit → Used

- The subjectAltName is an X.509v3 extension that is defined by RFC 5280. It was invented to support naming/property information models that do not fit the X.501 naming regime
- It supports manifold sets of information items about the subject of an X.509 certificate

```
SubjectAltName ::= GeneralNames
```

```
GeneralNames ::= SEQUENCE SIZE (1..MAX) OF GeneralName
```

• It has an extension point for a self-coined set of information items about the subject of an X.509 certificate

```
GeneralName ::= CHOICE {
    otherName [0] OtherName,
    ... }
OtherName ::= SEQUENCE {
    type-id OBJECT IDENTIFIER,
    value [0] EXPLICIT ANY DEFINED BY type-id }
```

Modelling Manufacturer Data: Divide&Impera, Tiles

X.509v3 certificate

otherName60802

Multiplicity: 1 *Design*: specified by IEC/IEEE 60802 *Values*: determined by manufacturers

otherName61158Type<N> *Multiplicity*: 0..1 (per Type <N>) *Design*: specified by IEC 61158 Type<N> *Values*: determined by manufacturers

otherNameOPCUA *Multiplicity*: 0..1 *Design*: specified by OPCF Values: determined by manufacturers

otherNameDIY *Multiplicity*: 0..1 *Design*: specified by manufacturers *Values*: determined by manufacturers

OtherName Standard Incarnation for IEC/IEEE 60802

- type-id: selecting an OID value is an IEC/IEEE 60802 responsibility. This can be done by e.g. allocating a value in the OID arc of IEEE 802.1 (1.0.8802.1, see https://lieee802.org/assigned-numbers/)
- value: specifying an ASN.1 structure is an IEC/IEEE 60802 responsibility. As a simple and rough upfront proposal (further elaboration is needed):

```
otherName60802Value = SEQUENCE {
    macAddresses SEQUENCE SIZE (1..MAX) OF BIT STRING(SIZE(48))
    ...}
```

OtherName Standard Incarnations for Middleware/ Applications

- Decisions and actions are a duty of the specification owner resp. the manufacturers of components for this domain. This includes:
 - Specification owner responsibilities e.g. PI (PROFINET), ODVA, OPCF or ...:
 - *Decisions*: whether to specify a 'Secure Device Identity' sub-profile under the authority of this specification. Whether to make its support optional or mandatory.
 - Actions (if needed): specify the structure for an OtherName incarnation that allows to express the manufacturer data according the 'Device Identity' information model of this domain
 - Manufacturer responsibilities:
 - *Decisions*: whether to utilize a 'Secure Device Identity' sub-profile for this domain (if specified and optional)
 - Actions (if needed): establish manufacturer data values, create OtherName objects for this domain-ofinterpretation, issue corresponding IDevID EE certificate(s), create corresponding IDevID credential(s) and build them into product instances

OtherName Custom Incarnations for Manufacturers

- All related decisions and actions remain an individual duty of an individual manufacturer. This includes:
 - *Decisions*: whether to specify and utilize a 'Secure Device Identity' sub²profile for own purposes
 - Actions (if needed):
 - Specify the structure for an OtherName DIY incarnation that allows to express the additional manufacturer data in the information model for its products
 - Instance-level actions: establish the manufacturer data values, create OtherName DIY objects for this domain-of-interpretation, issue corresponding IDevID EE certificate(s), create corresponding IDevID credential(s) and build them into product instances

Illustration for IDevID EE Cert Object Heritage

802.1AR→60802 profile→middleware/application sub-profile(s)→manufacturer sub²-profile

IDevID Credential Multiplicity

- Default case: #1 physical product resp. orderable item = #1 IDevID credential with
 - #1 IDevID credential = #1 IDevID EE certificate
 - **#1 IDevID EE certificate = #1..n** otherName incarnations
 - The otherName60802 object is issued by the manufacturer according the design that is specified by IEC/IEEE 60802
 - Zero, one or more otherName<...> objects issued by the manufacturer according the design that
 is specified by the <...> specification owner e.g. PI for PROFINET
 - Zero or one otherNameDIY objects issued by the manufacturer according its own design
- Special case: #1 physical product resp. orderable item = #n IDevID credential to cover
- Multiple cryptographic algorithms or key lengths (subjectPublicKey and/or signature)

Follow-Ups Are Needed

- 'Device identity' model for IA-stations (IEC/IEEE 60802)
- IEEE STD 802.1AR, chapter 5.3 'Required capabilities' and 5.4 'Optional capabilities'
 - Requirements on IDevID EE/CA certificates beyond the subject field resp. subjectAltName extension in IDevID EE certificates
 - Requirements beyond IDevID EE/CA certificate objects e.g. internal/external private key generation
- IEEE STD 802.1AR, chapter 5.5 'Supplier information'
 - Requirements beyond the 'device' component e.g. obligation to publish objects (certificates, CRLs, policies) or provide services (means to request revocation status)

Abbreviations

ASN.1	Abstract Syntax Notation no. 1	MAC	Media Access Control
Cert	Certificate	MIB	Message Information Base
CNC	Centralized Network Configuration	MQTT	Message Queuing Telemetry Transport
CRL	Certificate Revocation List	OID	Object ID
CUC	Centralized User Configuration	OPC	Open Platform Communications
DAP	Device Access Point	OPCF	OPC Foundation
DHCP	Dynamic Host Configuration Protocol	PI	PROFINET International
DIT	Directory Information Base	PLC	Programmable Logic Controller
DIT	Directory Information Tree	PROFINET	PROcess Fleld NETwork
DIY	Do It Yourself	RDN	Relative DN
DN	Distinguished Name	SNMP	Simple Network Management Protocol
DNS	Domain Name Service	STD	STandarD
GSD	General Station Description	TCP	Transmission Control Protocol
HTTP	HyperText Transfer Protocol	TLS	Transport Layer Security
I&M	Identification and Maintenance	TSN	Time-Sensitive Networking
IA	Industrial Automation	UA	Unified Architecture
ID	Identifier	VIN	Vehicle Identification Number
IO	Input Output	YANG	Yet Another Next Generation
IOC	IO Controller		
IOD	IO Device		
IP	Internet Protocol		

Contacts

Kai Fischer, Siemens AG, T CST SES-DE, kai.fischer@siemens.com

Andreas Furch, Siemens AG, T CST SES-DE, andreas.furch@siemens.com

Oliver Pfaff, Siemens AG, DI FA CTR ICO PO, oliver.pfaff@siemens.com

Ingredients of IA-Stations

'Device Identity' of IA-Stations (1)

'Device' component model

'Device identity' information model

'Device Identity' of IA-Stations (2)

- Device identity is the representation of an industrial automation entity (e.g. IA-station) in interactions with other entities or system components
- Device identity comprises unique identifiers and supplementary attributes/properties:
- Identifiers uniquely refer to an entity within an understood domain of interpretation e.g. product serial numbers (example from automotive: VINs such as 5J8TB4H38FL002262)
- Attributes/properties describe distinct characteristics (non-unique) of an entity e.g. product class (example from automotive: brand name/model name/model type such as "Volkswagen"/"Golf"/ "Convertible")
- The purpose of such device identity items is the fulfillment of use cases e.g. *device replacement without engineering*
- Different stake-holders (IEC/IEEE 60802, middleware/application specification initiatives, component manufacturers, component users) will have different perspectives of the set of identifiers/attributes they are interested in and that are processed by them

Subject and SubjectAltName According RFC 5280

X.509v3 certificate

(RFC 5280)

version

serialNumber

signature

issuer

validity

subject

subjectPublicKeyInfo

extensions

signature Algorithm

signatureValue

Subject (field): *identifies the entity* associated with the public key stored in the subject public key field

SubjectAltName (extension): *allows identities to be bound to the subject of the certificate:*

- *i.* These identities may be included in addition to or in place of the identity in the **subject** field of the certificate
- *ii.* Defined options include an Internet electronic mail address, a DNS name, an IP address, and a Uniform Resource Identifier (URI)
- iii. Other options exist, including completely local definitions
- *iv.* Multiple name forms, and multiple instances of each name form, MAY be included
- v. Whenever such identities are to be bound into a certificate, the subject alternative name extension MUST be used

Use Cases for PROFINET 'Device Identity'

- **Engineering**: VendorID, DeviceID, ModuleIdentNumber, SubmoduleIdentNumber
 - Note: the (VendorID, DeviceID)-tuple identifies a GSD file which provides the data sheet for dealing with a device during its engineering
- Device/module/submodule replacement: VendorID, OrderID of the concerned item
 - The (VendorID, OrderID)-tuple identifies device/module/submodule replacement candidates for the use case 'Device replacement without engineering'
- Device/module/submodule repair/warranty: VendorID, OrderID, IM_Serial_Number of the concerned item
 - The (VendorID, OrderID, IM_Serial_Number)-triplet identifies a device/module/submodule instance
- Device/module/submodule (firmware/software) update: VendorID, OrderID, IM_Hardware_Revision, IM_Software_Revision of the concerned item

Native PROFINET 'Device Identity' (1)

- Manufacturer data describing the core 'Device Identity' of IO devices/controllers:
 - VendorID (Unsigned16): PI-assigned manufacturer identifier, see <u>PI catalogue</u>
 - **DeviceID** (Unsigned16): manufacturer-assigned type identifier for the product class of an IO device
 - **OrderID** (UnicodeString8[64]): manufacturer-assigned class identifier for mutually replaceable product instances, resolution is manufacturer-specific (opaque for owners/operators)
 - **IM_Serial_Number** (VisibleString[16]): manufacturer-provided instance identifier, establishes uniqueness in addition to the n-tuple (VendorID, DeviceID, OrderID, IM_Hardware_Revision)*
 - *IM_Hardware_Revision* (Unsigned16): manufacturer-provided information on component hardware
 - **IM_Software_Revision** (Unsigned8[3]): manufacturer-provided information on component software

Native PROFINET 'Device Identity' (2)

- Additional manufacturer data describing the 'Device Identity' of IO (sub)modules (which may have their own *VendorID*, *DeviceID*, *OrderID*, *IM_Serial_Number*, *IM_Hardware_Revision*, *IM_Software_Revision*):
 - ModuleIdentNumber (Unsigned32): manufacturer-provided type-identifier for IO modules, identifies an IO module type uniquely in addition to the (VendorID, DeviceID)-tuple
 - Note: the ModuleIdentNumber for the DAP module can also serve as DeviceID (in case of media redundancy there can be 2 DAP modules in 1 IO device which have the same ModuleIdentNumber)
 - **SubmoduleIdentNumber** (Unsigned32): manufacturer-provided type-identifier for IO submodules, identifies an IO submodule type uniquely in addition to a ModuleIdentNumber
- Owner/operator data items (out-of-scope with respect to an IDevID EE certificate sub-profile):
 - N.a. (such items exist, e.g. I&M1/2/3 objects but are not considered herein)