'Secure Device Identity' Profile for TSN-IA

IEEE Plenary; March 07, 2022

Kai Fischer, Andreas Furch, Oliver Pfaff

SIEMENS

Problem Statement

- This is a follow-up to the IEEE January plenary session 'Secure Device Identity' Profile for TSN-IA, 2022-01-21 (<u>https://www.ieee802.org/1/files/public/docs2022/60802-Pfaff-et-al-Secure-Device-Identity-Profile-0122-v01.pdf</u>)
- Recap (2022-01-21):
 - IDevID EE certificate design variance: *identified the driving factors*
 - Different identity models (by different bodies) for the same physical entity. sketched a co-existence model
- Home of this information: *preferred the SubjectAlternativeName extension*
- Next step (2022-03-07):
 - LDevID-NETCONF* and IDevID EE certificate design variance. *discuss the need for limitation*
 - 'Device' model in IEC/IEEE 60802: discuss implications on the LDevID-NETCONF/IDevID incarnations (per 'device')
 - 'Device identity' model in IEC/IEEE 60802. *discuss implications on LDevID-NETCONF/IDevID contents*

*: short-hand term for an LDevID (IEEE STD 802.1AR) that complies with the IETF RFC 7589 rules for NETCONF-over-TLS

LDevID-NETCONF/IDevID Use Cases

LDevID-NETCONF ------

- **Protect message exchanges** (NETCONFover-TLS)
- Authorize resource accesses (NACM)

Note: solutions for these use cases are already specified in a comprehensive way:

- NETCONF-over-TLS: IETF RFC 7589
- NACM: IETF RFC 8341

IDevID

- Prepare for NETCONF-over-TLS i.e. set-up and manage LDevID-NETCONF credentials/trust anchors and certificate-to-name mappings
 - Verify the original equipment manufacturer (counterfeit protection)
 - Check whether an IA station is an instance-inclass (system integrity/resilience)

Note: not all use cases already have solutions with comprehensive specifications

LDevID-NETCONF/IDevID Usage Models

LDevID-NETCONF

- **Frequently** used: see use cases above
- **Occasionally** updated (usually according a time schedule)
- Processed by verifiers in an <u>automated</u> fashion i.e. without human user-attention

IDevID

- **Rarely** used: see use cases above
- Not updated
- (May be) processed by verifiers in an <u>automated</u> fashion i.e. without human userattention
- → Design variance for LDevIDs-NETCONF and IDevIDs needs to be limited to facilitate automated processing in multi-vendor environments

*: IETF RFCs 7589 and 6125 do not detail IDevID contents

LDevID-NETCONF/IDevID Verification/Consumption

LDevID-NETCONF

- 1. Certification path validation: IETF RFC 5280
- 2. Proof-of-Possession checking: IETF RFC 5246
- 3. Entity checking:
 - Client identity:
 - IETF RFC 7589 (certificate-to-name mapping)
 - IETF RFC 8341 (authorization)
 - Server identity: IETF RFC 7589 (expected vs. actual based on addressing info [expected] and SAN extension content* [actual])

IDevID

- 1. Certification path validation: IETF RFC 5280
- 2. Proof-of-Possession checking: IETF RFC 5246**
- 3. Entity checking:
 - Client identity: n.a. in IEC/IEEE 60802
 - Server identity: expected vs. actual according owner/operator-selected strategies (tbd); upfront candidates:
 - i. Any end station/bridge that can authenticate
 - ii. ...and that is from a dedicated manufacturer
 - iii. ...and that belongs to a dedicated type
 - iv. ...and that is a dedicated instance

*: see IETF RFC 6125 for the details

**: for IDevID usage with NETCONF-over-TLS

Device Model: IA Stations

NETCONF client CUC entity YANG NETCONF server Network configuration

Represents a single NETCONF/YANG server which serves a single YANG info model that can be reached through multiple network interfaces. Also represents a single NETCONF client.

Unrestricted | Siemens 2022 | 2022-03-07

*: showing an exemplary composition by functional units as well as end stations and bridges

Device Model: LDevID-NETCONF/IDevID Implications

LDevID-NETCONF

- Number of credentials in an IA station: by default a singleton
 - This credential is used by the single NETCONF/YANG server on the IA station independent from the IP address by which this server is addressed
 - Its EE certificate shall contain #1..n instance identifiers in form of #1 SAN extension providing #1..n dNSName (or iPAddress) values

IDevID

- *Number of in an IA station*: by default a **singleton** (per orderable item)
 - This credential is used by the single NETCONF/YANG server on the IA station independent from the IP address by which this server is addressed
 - Its EE certificate can not contain instance identifiers in form of dNSName (or iPAddress); these values are not known by the manufacturer (in product business)

Device Identity Model: YANG Module ietf-hardware

- This section uses IETF RFC 8348 to describe a 'device identity' model for IEC/IEEE 60802:
 - IETF RFC 8348 provides a "YANG data model for the management of hardware on a single server"
 - This helps to make the consideration of 'secure device identity' concrete. It is meant to be non-normative.
- IETF RFC 8348 defines the YANG modules <code>iana-hardware</code> and <code>ietf-hardware</code>
 - iana-hardware is a predefined and extensible enumeration of understood purposes for a piece of HW
 - Example values: backplane, chassis, cpu, power supply...
 - ietf-hardware provides a YANG information model to describe a variety of HW-based products in the interval [atomic...composite]
 - The container hardware incarnates an ietf-hardware info model. It provides a list of component items
 - A child object component describes a HW item that is classified by the iana-hardware enumeration. The management of its values is a shared concern between manufacturers and users:
 - ro items are manufacturer-assigned values that are part of the state data (can not be configured)
 - rw items are user-managed values that are part of the config data (may be configured)
 - See <u>here</u> for a HelloWorld example of an ietf-hardware object in JSON notation

Device Identity Model: ro Child* Elements in component

- physical-index (int32, 0..1): a manufacturer-assigned index value to refer to other component objects for Entity-MIBs
- **description** (string, 0..1) a manufacturer-assigned description
- contains-child (string, 0..n): a manufacturer-assigned reference to a component object in the same hardware object
- hardware-rev (string, 0..1): a manufacturer-assigned hardware revision for the component
- firmware-rev (string, 0..1): a manufacturer-assigned firmware revision for the component
- **software-rev** (string, 0..1): a manufacturer-assigned software revision for the component
- serial-num: (string, 0..1): a manufacturer-assigned serial number for the component (unique per mfgname)
- **mfg-name** (string, 0..1): a manufacturer-assigned name for the component manufacturer (no registry authority resp. registration process is mentioned in IETF RFC 8348)
- model-name (string, 0..1): a manufacturer-assigned model name associated with the physical entity
- is-fru (boolean, 0..1): a manufacturer-assigned Boolean identifying if the physical entity described by this component is replaceable
- mfg-date (date-time, 0..1): a manufacturer-assigned date of manufacturing of the component
- uuid: (uuid, 0..1): a manufacturer-assigned universally unique identifier for this component

Device Identity Model: IA Stations

Single instance of component with class chassis in single container hardware*

Functional unit 1		Functional unit 2		Functional unit 3	
	! !		/ &		

Single instance of YANG module ietf-hardware

*: showing an exemplary hardware information model

Device Identity Model: Protection Level

- The information contained in a hardware container is not protected on application-level. This information is only protected during transit (NETCONF-over-TLS)
- Using LDevID-NETCONF credentials, clients (CNC):
 - Can verify whether a response to a hardware retrieval request was sent by an authenticated endpoint over an authenticated transport
 - Can **not verify** whether the passed information object is **genuine** i.e. whether or not its manufacturer-supplied subset of a hardware container originates from the claimed manufacturer and was not modified
 - This creates risks such as **product counterfeiting** and **system integrity/resilience violations** resulting from manipulations such as:
 - **False** mfg-name values (illustrated)
 - **False** model-name values

Device Identity Model: LDevID-NETCONF/IDevID Implications

LDevID-NETCONF

- EE certificate contents for NETCONF/YANG servers:
 - SAN extension with dNSName and/or iPAddress (IETF RFC 7589, also see RFC 6125)

IDevID

- EE certificate contents for NETCONF/YANG servers:
 - Needs to bind identification information to safeguard manufacturer-specific information in the ietf-hardware info model (see below for details)

Secure Device Identity: 'Device Identity' Protection Demand

LDevID-NETCONF

- The protection of manufacturer-supplied content in hardware containers is not necessary
 - Rationale: manufacturer-supplied content in hardware containers is checked initially based on an IDevID (and might by re-checked later on this basis); no recurring checks are needed whenever LDevID-NETCONF credentials are used

IDevID

- The protection of manufacturer-supplied content in hardware containers is needed to address use cases such as:
- Verify the original equipment manufacturer (*counterfeit protection*)
- Check whether an IA station is an instance-in-class (system integrity/resilience)

Secure Device Identity: Protection Model

- This protection can be provided **by-reference** *i.e.* an otherName in the IDevID EE certificate carrying:
 - a reference to an instance of ietf-hardware information object or a part thereof (e.g. component)
 - an identification of pre-digesting transform(s)
 e.g. extraction of manufacturer-assigned
 information
 - an identification of the digesting algorithm e.g. SHA2-256 or SHA2-512
 - the **digest-value** of the referred and transformed information in an ietf-hardware instance

Notes:

- 'Secure device identity' additions are shown in bold
- The *by-reference* binding requires verifiers to obtain 2 objects (IDevID certification path via TLS and hardware container via NETCONF-over-TLS) and to assess these 2 objects in conjunction

Secure Device Identity: Alternative Binding Approaches

- By-value: the IDevID EE certificate becomes self-contained (no 2nd object needed). But this duplicates a potentially large set of information items (hardware with n>1 component child objects), requires YANG-to-ASN.1 syntax transformation for a complex information model (ietf-hardware) esp. its linking feature → not preferred
- By-URL (pointing to a protected object): requires verifiers to obtain 3 or more objects (IDevID certification
 path via TLS and hardware container plus a new object providing e.g. a detached signature for
 manufacturer-specific contents in hardware container via NETCONF-over-TLS) and to assess these
 objects in conjunction

→ not preferred

- By-URL (pointing to an unprotected object): not smart
 → not viable
- By-context (Issuer field in IDevID EE certificate vs. mfg-name in ietf-hardware instance): does not protect other manufacturer-specific values in an ietf-hardware instance e.g. model-name. Introduces syntax-rooted issues: the Issuer field is an X.500 name (DN) e.g. CN=TSN-IA Product CA, OU=IT Department, DC=Alice US, DC=COM. The mfg-name could be a friendly name e.g. "Alice Inc."
 → not preferred

Secure Device Identity: Subject-Specific LDevID-NETCONF/ IDevID EE Certificate Contents

LDevID-NETCONF

- EE certificate contents for NETCONF/YANG servers:
 - SAN extension with dNSName and/or iPAddress (IETF RFC 7589, also see IETF RFC 6125)

IDevID

- EE certificate contents for NETCONF/YANG servers:
 - SAN extension with otherName carrying:
 - a reference to an instance of an ietfhardware information object or a part thereof
 - an identification of **pre-digesting transform(s)**
 - an identification of the **digesting algorithm**
 - the digest-value of the referred and transformed information in an ietf-hardware instance

Summary, Follow-Ups

- Reminder: IDevID credentials are required to perform the security setup of an IA-station in factory default according the IETF-defined security model for NETCONF/YANG.
 - The automation of this security setup demands a common design for IDevID EE certificates
 - With some additions more use cases can be facilitated by the IDevID credentials. This includes counterfeiting protection and system integrity/resilience.
- Required follow-ups:
 - Further elaborate on the 'secure device identity' model for IEC/IEEE 60802:
 - By-reference details esp. reference mechanism
 - Pre-digesting transform(s) details
 - Details for assessing IDevID EE certificates and ietf-hardware information bound to it; supporting several assessment strategies
 - Further elaborate on the 'device identity' model for IEC/IEEE 60802 (note: this is at the boundary but not inside the security turf)

Abbreviations

ASN.1	Abstract Syntax Notation no. 1	LDevID	Locally significant Device ID
CA	Certification Authority	MAC	Media Access Control
Cert	Certificate	MQTT	Message Queuing Telemetry Transport
CNC	Centralized Network Configuration	NETCONF	NETwork CONFiguration
CRL	Certificate Revocation List	OID	Object ID
CUC	Centralized User Configuration	PLC	Programmable Logic Controller
DHCP	Dynamic Host Configuration Protocol	PoP	Proof-of-Possession
DIY	Do It Yourself	RA	Registration Authority
DNS	Domain Name Service	ro	read only
EE	End Entity	rw	read write
HTTP	HyperText Transfer Protocol	SAN	Subject Alternative Name
IA	Industrial Automation	SHA	Secure Hash Standard
ID	IDentifier	STD	STandarD
IDevID	Initial Device ID	TCP	Transmission Control Protocol
IO	Input Output	TLS	Transport Layer Security
IOC	IO Controller	TSN	Time-Sensitive Networking
IOD	IO Device	URL	Uniform Resource Locator
IP	Internet Protocol	UUID	Uniform Resource ID
JSON	JavaScript Object Notation	YANG	Yet Another Next Generation

Contacts

Kai Fischer, Siemens AG, T CST SES-DE, kai.fischer@siemens.com

Andreas Furch, Siemens AG, T CST SES-DE, andreas.furch@siemens.com

Oliver Pfaff, Siemens AG, DI FA CTR ICO PO, oliver.pfaff@siemens.com

Device Model: End Stations in IEC/IEEE 60802

Unrestricted | Siemens 2022 | 2022-03-07

*: showing an exemplary/random suite of middleware/application modules

Device Model: Bridges in IEC/IEEE 60802

Security Setup Sequence (1)

Unrestricted | Siemens 2022 | 2022-03-07

*: Not detailed herein

**: Does not comply to NETCONF/YANG security rules set forth by IETF RFCs 6241, 7589

Security Setup Sequence (2)

Own MAC and IP address

Own IDevID credential/trust anchor (not needed here)

Further IDevID trust anchors

Own LDevID-NETCONF credential/trust anchor

CA (CA, sub-CA, RA or proxy) and certificate repository feature

Unrestricted | Siemens 2022 | 2022-03-07

IA station
 Own MAC and IP address(es)*
 Own IDevID credential/trust anchor
 NACM objects (role-based)
 Own ietf-hardware incarnation
 LDevID-NETCONF trust anchor.
 NETCONF/YANG server is defunct**
NETCONF-over-TLS setup: TO-BE-DONE

TLS (almost plain vanilla: own LDevID-NETCONF [CNC] vs. own IDevID [IA station]) NETCONF-over-TLS: supply LDevID-NETCONF credential (misc. key-pair generation options)

Own LDevID-NETCONF credential

TLS (plain vanilla: own LDevID-NETCONF [CNC] vs. own LDevID-NETCONF [IA station]) NETCONF-over-TLS: supply LDevID-NETCONF certificate-to-name mapping

Certificate to name mapping

*: Not detailed herein

**: Does not comply to NETCONF/YANG security rules set forth by IETF RFCs 6241, 7589

*: Not detailed herein

**: Complies to NETCONF/YANG security rules set forth by IETF RFCs 6241, 7589

Unrestricted | Siemens 2022 | 2022-03-07

***: May encompass LDevID credentials/trust anchors (and further security settings) for middleware/applications

GeneralName Choices (IETF RFC 5280)

- [0] **otherName** (asn1:OtherName)
- [1] **rfc822Name** (asn1:IA5String)
- [2] **dNSName** (asn1:IA5String)
- [3] **x400Address** (asn1:ORAddress)
- [4] **directoryName** (asn1:Name)
- [5] **ediPartyName** (asn1:EDIPartyName)
- [6] uniformResourceIdentifier (asn1:IA5String)
- [7] **iPAddress** (asn1:OCTET STRING)
- [8] **registeredID** (asn1:OBJECT IDENTIFIER)